
7 RD-R55 846 TTCKING SOPTWdARE
CRISIS: MCRO RPPRORCH(U)

NAAL i/I
POSTORADUATE SCHOOL MONTEREY Ca T N OURESHI MAR 85

UNCLASSIFIED F/G 9/2 NL

mhhhhEEE'5E

°.

2.

1 1 0111131 2-0

flll l 50 III l jiii
11111 -i8

1*1 1 4

NATIONAL BUREAU O: STANDARDS
MICROCOPY RESOLUTION TEST CHART

-

..

: -.-: : , : .: • : .: : : : :
: : : : : : : : : : : : : : : : : : ..: : : ..

: : : . .:-. : :.2_ . - , ..:_ : -_ .2. ..- - ..

• . ., " .,,..- ,,a, ,,,' ',* "-.--
b Jr .,,, ,'i '...-:,,~a n ul ,,

.

,a...

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

In

DTIC
E L E C T E-qkU

aWJUL 3 1985

THESIS
ATTACKING SOFTWARE CRISIS

A MACRO APPROACH

by

CD Tahir N. Qureshi

LU March 1985

Thesis Advisor: Clair A. Peterson

Approved for public release; distribution is unlimited

8 5 6 25 02&

SECURITY CLASSIFICATION OF THIS PAGE (lhen Data gnteredO "__ _ _ _ _

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GO T ACCESSION NO. 3 IPIENT'S CATALOG NUMBER

4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED S
Master's Thesis

A-tacking Software Crisis March 1985Macro Appoah-...A Macro Approach 6. PERFORMING ORG. REPORT NUMBER - -

7. AUTHOR(*) a. CONTRACT OR GRANT NUMBER(O)

Tahir N. Qureshi

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943

S
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1985

Monterey, CA 93943 1s. NUMBER OF PAGES
86

14. MONITORING AGENCY NAME & ADDRESS(II different from Controllil Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED S
ISa. DECL ASSI FICATIONi DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited
S

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, I1 different from Report)

IS. SUPPLEMENTARY NOTES

0
19. KEY WORDS (Continue on revere elde itneceeeary, mnd Identfy by block number)

software, software engineering, software development, -
software crisis

20. ABSTRACT (Continue on revere side It neceecary and Identify by block number)

This thesis attempts to provide solutions to overcome the software
crisis. The basic premise of this thesis is that unless the prob-
lems at the software industry level are solved, no number of
technical and project management tools can be of much help in
overcoming the software crisis. The author examines the
existence of the software crisis, its causes and its serious
impact on every walk of life. The nature of software development
is discussed, considerina it as a craft (Continued)
DD I FOR, 1473 EDITION OF 'NOV 65 IS OBSOLETE

S 'N 0102- LF- 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (When Data fnteed) 5

SECURITY CLASSIFICATION OF THIS PAGE (When Da ml,.

ABSTRACT (Continued)

and as an engineering discipline. After evaluating various
alternatives, a managerial approach is emphasized. Issues like
education, professionalionalization, programmer's productivity,
and human factors are discussed. Action on these recommendations
requires crossing organizational boundaries, and viewing the prob-
lem from a macro perspective.

.2 .

I -('ln-Vor

S N 0102. LF. 014.6601

2 SECURITY CLASSIFICATION OF THIS PAGE(Wa4ho Date Entered)

Approved for public release; distribution is unlimited.

Attacking Software Crisis
A Macro Approach

by

Tahir N. Qureshi
Lieutenant Commander Pakistan Navy
M.B.A., University of Karachi, 1981
L.L.B., University of Karachi, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1985

Author:
ianir N~. Quresni

Approved by: -- a -
U.A. retwson, Thesis Advisor

X0774R.. Dyns, Second Reader

W.R. Greer r. armn,
Department of AAministrative Sciences

Kneale rf. mrh-
Dean of Information and Policy siences -'--i"

3

*.-................ J

ABSTRACT

This thesis attempts to p ovide solutions to overcome

the software crisis. The basic premise of this thesis is

that unless the problems at the software industry level are

solved, no number of technical and project management tools

can be of much help in overcoming the software crisis. The

author examines the existence of the software crisis, its

causes and its serious impact on every walk of life. The

nature of software development is discussed, considering it

as a craft and as an engineering discipline. After evalu-

ating various alternatives, a managerial approach is empha-

sized. Issues like education, professionalization,

programmer's productivity, and human factors are discussed.

Action on these recommendations requires crossing organiza-

tional boundaries, and viewing the problem from a macro

perspective.

4

.- -.. .- 7 .

TABLE OF CONTENTS

I. INTRODUCTION....................10

A. OVERVIEW....................10

B. APPROACH....................12 .-

ii. SOFTWARE CRISIS..................14

A. WHAT IS THE SOFTWARE CRISIS?...........14

B. CAUSES OF SOFTWARE CRISIS...........15

1. Disequilibrium 15

2. Shortage of Software Practitioners 15

3. Managerial Error..............17

4. Trial and Error..............17

5. Unending Search for Technical Tools . . . 18

C. IMPACT OF SOFTWARE CRISIS...........19

III. NATURE OF SOFTWARE DEVELOPMENT............24

A. SOFTWARE DEVELOPMENT AS A CRAFT........24

B. SOFTWARE ENGINEERING..............27

IV. SOLUTIONS......................32

A. ALTERNATIVES..................32

1. Status Quo.................32

2. The Technical Approach............33

3. The Missing Link..............34

B. EDUCATION...................35

C. SHORT-TERN ALTERNATIVE TO EDUCATION.......39

D. SOFTWARE RECOGNITION..............40

E. PROFESSIONALIZATION..............41

F. PROGRAMMER'S PRODUCTIVITY............43

1. Why Increase Programmer's

Productivity?................43

5

2. Factors Affecting Programmer's

Productivity 44

3. How to Increase Programmer's

Productivity 45

G. BRIDGING THE GAP BETWEEN ACADEMIA AND

INDUSTRY 48

H. MANAGEMENT - TECHNOLOGY OVERLAP 50

I. REINVENTING THE WHEEL 51

1. Private Programs52

2. Public Programs 52

J. TRANSITION FROM LABOR-INTENSIVE TO

CAPITAL-INTENSIVE INDUSTRY 53

V. SOFTWARE AS A PRODUCT 55

A. THE PRODUCT CONCEPT 55

B. REQUIREMENTS - THE SOREST SPOT 57

1. Import and Impact 57

2. The Users Dilemma 58

3. The Effects 60 -.

4. The Answer 61

C. USER ORIENTATION VS CUSTOMER ORIENTATION . . 63

1. User Orientation64

2. Customer Orientation64

VI. THE HUMAN FACTORS 66

A. MOTIVATION 66

B. WATCH OUT FOR THE COMPULSIVE PROGRAMMER . . 69

C. STAFFING 71

1. The Principle of Top Talent 72

2. The Principle of Job Matching 72

3. The Principle of Career Progression . . 72

4. The Principle of Team Balance 73

5. The Principle of Phase Out 73

D. CAREER PATHS74

6
.

VII. CONCLUSIONS AND RECOMMENDATIONS...........75

LIST OF REFERENCES.....................78

BIBLIOGRAPHY.......................81

INITIAL DISTRIBUTION LIST.................86--

70

LIST OF TABLES

1. Comparison of First Level Motivational Factors

Data Processing Professionals Vs General

Population 68

8

. . .~~~ -. . . .

LIST OF FIGURES S

2.1 Hardware/Software Cost Trends............19

6.1 Comparative Growth Needs and Social Needs 67

9S

S -

S -

S 3G

S" "2:.

. . • .

S.2 ii

9.

" -i .i -; .' " -2 1 il y i.

I. INTRODUCTION

A. OVERVIEW

Give a man a hammer and he will begin to see the
world as a collection ot nails.

This is precisely what is happening to the software of

today. On a random survey of 50 articles from software jour-

nals, it was revealed that the authors of 45 of them were

mathematicians, physicists, scientists or electrical/

electronics engineers. This has led the software literature

and software development to be biased towards science and

technology. These scientifically oriented people have been

trying hard to hammer the software crisis with a collection

of mathematical and technical tools, for instance software

engineering, software science and software physics. Treating

software development as equivalent to the blueprints of

construction engineering and electronic circuit diagrams

further supports this bias.

The proliferation of scientific and technical persons in

the computer industry can be attributed to the involvement

of electrical/electronics engineers, in the manufacture and

maintenance of the hardware. Moreover, automated computing

was regarded as an off-shoot of mathematics during the

evolutionary stages of automated computing. In the early

days, software was developed mainly for accounting and

financial purposes, which was largely mathematically

oriented. Therefore, the job of programming was also

entrusted to mathematicians and engineers. With the accept-

ance of computer as a useful tool in every walk of life, a

host of large, complex and non-scientific programs were

10

required. Software was therefore no more a bunch of

formulas, but was something encompassing the entire body of

knowledge. The technological innovations of these technical p

persons certainly benefitted the hardware but the cheaper

and more powerful hardware demanded equally powerful soft-

ware. With the knowledge limited to the technical aspects,

they were not able to provide the large amount of inter- p

disciplinary software. The declining costs of hardware made

it affordable to many organizations. To make the hardware

function, increasing amounts of software was required, which

was not readily available. Thus, demand exceeded supply

causing disequilibrium in the market forces which led to the

software crisis.

In every time of crisis, every time of troubles,

prophets have come roaring out of the desert, preaching p

baptism and repentance of sins. The software case is no

different. Even today, various groups are taken to the high

places and told that salvation is found only in the use of a

new high order language, structured programming, software

tools, requirements specifications languages, proofs of

correctness etc. And the desert is littered with the bones

of those who believed and followed. [Ref. 1]. Several

books and magazine articles have appeared in the recent

years chronicling the recognition of a "software crisis" in

the late 1960's and subsequent attempts to deal with it

[Ref. 2].

As an attempt to overcome this crisis, several tech-

niques have been proposed. Systems developers are reluctant

to use these techniques both because their usefulness has

not been proven for programs with stringent resource limita-

tions and because there are no fully worked-out examples of

some of these [Ref. 3]. However, a few of these techniques

have proved to be useful in developing software as well as

in promoting further research.

11|

have achieved more. These primitive craftsmen were in fact,

good engineers. Therefore, an engineer is distinguished from

a craftsman because of his tools and methods, and not

because of his achievements as an engineer. The craftsman

has full knowledge of what he is going to build and knows

how to build it. He does not require elaborate plans, scaled

blueprints, exact quantities, careful measurements, delivery

schedules, progress charts and cost estimates. When he tries

to make something, he succeeds because he knows how to make

it and his customer knows what to expect. If by chance

something goes wrong, he knows how to adapt his work or his

design to compensate for the error. Finally, his product

works, provides good service and lasts for a considerable

time. If it doesn't, then it merely indicates that the

craftsman was not such a master as he thought he was and so

he would not get the next job. So, "survival of the fittest"

was the rule for a long time i.e. only the fittest craftsmen

and the fittest designs survived.

A similar kind of situation can be found in the software

arena. A software developer starts with a description of

what his client thinks he wants. However, the description

is so imprecise, inconsistent and even inconstant that it

can serve only as a rough diagram and not as a firm plan for

implementation. Nonetheless, a good programmer knows how to

proceed. He seems to have an intuitive grasp of his program-

ming language and an ingrained feeling for what his oper-

ating system can be made to do. He starts writing and

testing his code, and when it is all finished, it all mirac-

ulously fits together and works. If anything goes wrong, he

hacks a bit at his already written code, modifies his plans

a bit, and after some delay, delivers his product. If it is

not exactly what his client wanted, he can continue to hack

until the client is satisfied, or more often, he gets tired

of waiting. If the product never works at all, or is too

25

III. NATURE OF SOFTWARE DEVELOPMENT

A major cause of software crisis is that software devel-

opment has not been understood. Some of the software

managers and practitioners are not clear about what software

development really is. It is being related to almost every

existing field of knowledge in the puT.;uit of making the

theories and principles of that particular field applicable

to software development. Software Science and Software

Physics are the well-known and mostly unsuccessful examples

of such relationships. If this practice continues, soon one

will find software chemistry and software mathematics, and

there is no end.. to such relationships. This state of

affairs of trial and error is not encouraging. The nature

of software development must be decided, so that the future

research effort is put in the right direction.

A. SOFTWARE DEVELOPMENT AS A CRAFT

Is software development an engineering discipline or a

craft? This question is crucial for effective management of

software development. To answer this question we must first

understand what is an engineering discipline and how it

differs from craftsmanship.

At the first instance, the time before the emergence of

engineering methods to the age of master craftsman needs to

be looked into. Only then realistic comparison can be made

with engineering. The engineering achievements of the master

craftsmen were extraordinary. They created many excellent

buildings, bridges, ships, furniture and many other remark-

able things which are unmatched in more recent times. With

the materials and tools available then, no engineer could

24

for damages resulting from the the effects of software

errors would force software suppliers to take the correct-

ness of their products more seriously. This may lead them to

employ only those programmers who are capable of producing

correspondingly reliable software. The registration and

licensing of software engineers will be proposed more

frequently and will certainly be considered more seriously

in the future. If the supply of appropriately qualified

software engineers is not increased substantially, software

output will be restricted. [Ref. 7].

The tremendous social and economic impact of software is

posing a great challenge for the managers--a challenge to

eliminate the crisis and to put software to productive use.

23

delay in such applications will soon be high. From a simple

economic standpoint, the major impact of software crisis is

on the society, which is due to a considerable gap between

supply and demand in the software market. Customers are . -

paying unnecessarily high costs for software and its use and

they are not getting the maximum benefits. Avoidable costs

are also being incurred which are due to errors and fail-

ures. Such costs are sometimes shifted unfairly onto persons

who are not responsible for the errors and failures that

caused them and therefore cannot protect themselves from the

consequences of such errors and failures. In many situations

the customers, apart from incurring these avoidable costs,

loose time when the mistakes are being corrected and are

inconvenienced. Even when the costs to any particular person

are low, the total economic loss can be high when the many

persons who are so affected, are considered.

When incidents with consequences as serious as those

mentioned above begin to occur with considerable frequency,

a public reaction can be expected. It may consist of calls -

some rational, some emotional - for legal and political

action. The result will be some combination of restricting

and curtailing new developments based on computer technology

and social, political, legal and economic pressure to

improve the quality of software products and the capabili-

ties of software producers. Such public reactions are not a

new thing. They have already occured with other engineering

fields. For instance, nuclear reactors for electric power

generation and proposed nuclear fuel reprocessing plants

have been the targets of demonstrations and legal actions by

groups of citizens in several countries.

These pressures to improve the quality of software prod-

ucts and the capabilities of the software producers can also

be expected to have a restrictive effect on new applications

of computer technology. The introduction of legal liability

22

"' - " - " ,- ° ' 1 L -- - •. ,
-

. . " i • - ,
°

.--- -" S . • . .

good picture of the impact of computers in the future. It

states:

Welcome! Always glad to show someone from the early '80s
around the place. The biggest change of course, is the
smart machines (computer -;they're all around us. No
need to be alarmed they re very friendly. Can't
imagine how you lived without them. The telephone, dear
old thing, , is giving a steady busy signal to a bill
collector I m avoiding. Unl~ss he starts calling from a
new number my phone doesn t know, he'll never get
through. TURN OFF! Excuse me for shquting--almost forgot
the bedroom television was on. Let s see, anything else
before we go? The oven already knows the menu for
tonight and the kitchen robot will mix us a mean
martini. Guess we're ready. Oh no, you won't need a key.
We 11 just program the lock to recognize your voice and
let you in whenever you want.
A revolution is under way. Most Americans are already
well aware of the gee-whiz gadgetry that is emefging, in
rapidly accelerating bursts, from the worl s high-
technology laboratories. But most of us perceive only
dimly how pervasive and profound the changes of the next
twenty years will be. We are at the aawn of the era of
the smart machine--an "information age' that will change
forever the way an entire nation worRs, plays, travels
and even thinks. Just as the industriqLl revolution
dramatically expanded the strength of man s muscles and
the reach of his hand, so the smart-machine revolution
will magnify the power of his brain. But unlike indus-
trial revolution which depended on finite resources
such as iron anA oil, the new information age will be
fired by a seemingly limitless resource--the inexhaust-
ible supply of knowledge itself. Even computer scien-
tits, who best understand the galloping technology and
4t s potential are wondgrstruck by its implica ions.
It is really awesome, says L.C.Thomas of Bell

Laboratories.
Eventually, for example they will make possible the
full automation of many tactories,, displacing mllions
of blue-collar workers with a new "steel-collar" class
Even office workers will feel the crunch, as smart
machines do more and more of the clerical work.
Traditional businesses such as television, networks, and
publishing companies will encounter new competition as
programmers and ;dvertisers beam information directly
into the consumer s home.

The picture presented above is a small subset of what

the computers are capable of doing and what they eventually

will do. If there is any delay in application of computer

for the benefit of mankind, it will be because of the soft-

ware and not the hardware. Software crisis is impeding the

progress in applying computer systems to many tasks that are

possible and socially desirable. The social costs of the

21

organizations are software [Ref. 10]. These are only the

direct costs of software. Indirect costs are even bigger.

Delay in the delivery of software delays the delivery of the

entire computer system. This in turn, entails additional

costs for the organization. Return on investment of huge

amounts in the system is delayed and pay-back period is

extended. Until the system is delivered, the tasks which

are intended to be automated continue to be performed manu-

ally, which affects the productivity and profitability of

the organization. If opportunity costs of not reaping the

benefits of automation for a long period are considered, the

indirect costs go much higher. Furthermore, if substandard

software is accepted, all the possible and desired benefits

are not obtained even after incurring tremendous costs.

Finally, there are social costs of the organization's

inability to provide the required benefits to the society

because of software. Boehm illustrates this phenomenon with

the example of software development for a large defense

system [Ref. 10].

It (computer system) was planned to have an operational
lifetime of seven years and a total cost of about $1.4
billion--or about 200 million a year worth of capa-
bility. However, a six-month software delay caused a
six-month delay in makinf the system available to the
user who thus lost about $100 million worth of needed
capatility--about 50 times the direct cost of $2 million
for the additional software effort. Moreover, in order
to keep the software from causing further delays
several important functions were not provided inthn
initial delivery to the user.

Computers and its software are having a deeper and

deeper impact on personal lives. More and more of the activ-

ities, such as personal records, bank accounts, traffic

control, and medical services are being entrusted to

computers and its software. Tassel, in his book "The

Compleat Computer", gives abstract from an article published

earlier in "Newsweek." [Ref. 11] This article presents a

20

.

C. IMPACT OF SOFTWARE CRISIS

Software is becoming increasingly complex and costly.
The annual cost of software in the United States in 1980 was

around $40 billion, or about 2% of the gross national

product, which is expected to grow to 13% by 1990 [Ref. 8].
The growth rate of software is greater than the economy in

general. As compared to hardware, the software costs are

continuing to rise as shown in Figure 2.1 [Ref. 9].

10 80-
Deeopment

0

S40 o "'

0

1955 1970 1985"

Year

Figure 2.1 Hardware/Software Cost Trends

Due to the trend exhibited in this figure, the impact of

software, while making capital investment decisions for
computer systems, is much greater than hardware.

An important impact of software crisis is directly on
the finances. Software-hardware costs ratio has become

lop-sided as is evident from Figure 2.1. It is not uncommon

to find that 90% of the total system costs in many

19

I'

state-of-the-art. In such a case, the engineer is expected

to familiarize himself with the relevant literature and

accumulated experience of others before embarking into what

is, for him, a new territory. To do otherwise is considered

irresponsible. This attitude is not the norm in software

development. Experiments designed to yield specific infor-

mation needed by the designer are not common. Often, the

software developer makes use of the "trial and error"

approach in its crudest form instead of consulting the

existing literature and other competent people. In fact, the

programmer is usually unaware of the limitations in his

knowledge and experience until an unexpected failure occurs

in his program.

5. Unending Search for Technical Tools

Another important factor leading to the software

crisis is that instead of emphasizing the nature of software

development, emphasis has been on unorganized and confusing

technical details. A tremendous amount of effort has been

spent in finding the right kit bag of tools which could

solve all the software problems. None of these tools such as

structured programming, modular design, and top-down coding,

have helped in overcoming the crises. They have instead,

succeeded in confusing the programmers. The situation is

that a promising new tool is proposed, but when applied it

fails to solve the problem. After much discussion, the

proponents announce that the tool is fine, but is not being

applied properly. The search then begins for the right tech-

nique for applying the tool and the vicious cycle begins

again. No one tries to understand that magical tools for

software development do not and will not exist. [Ref. 7].

18

.A' ~ * * *

. ..-.-.-... .-... .-....-.-.-.-..-. .-.-'-..-...-"--.-. ..-.-..' ..--. . ..-.'-.'. - . " " -' .". -'" '--'' . -. ''--.'

expectation of increased productivity, too frequently they

consume more resources than they free. [Ref. 7].

3. Managerial Error

Many failures of software projects are attributed to

managerial error. Management failures result from setting

of unrealistic goals and expectations, over-estimation of

ability of the organization to design, develop, implement

and absorb software systems, and employing underqualified

people on software projects. Good advice based on sound

knowledge of the technical possibilities and limitations is

not always available. When it is, the manager cannot always

recognize good and bad advice as such, and to distinguish

between the two. When faced with a choice between foregoing

a software system because qualified developers are not

available or trying to develop it with underqualified

persons, the decision process is often dominated by the hope

that this time everything will work out well, somehow.

Usually, it does not and as a result the scarce resources

are wasted.

4. Trial and Error

In every engineering discipline, trial and error

also has its place, but only when the designer is knowingly

and intentionally working in new areas, "pushing the state-

of-the-art" as it is sometimes called. In such cases, the

trial and error approach normally takes the form of scien-

tific experimentation. Experiments are designed to yield

answers to the open questions, to discriminate between

alternative hypothesis, to extend the limiting frontiers of

knowledge. The risks are consciously accepted and appro-

priate precautions are taken. Trial and error is not accep-

table when the designer is working in areas in which his own

personal expertise is lacking and is not up to the

17

gap between supply and demand. Marginal practitioners are

seldom forced out of the software market. They are instead

moved to another employer, usually with a raise in salary.

Thus, we have simultaneously a shortage of quantity and

quality. This shortage stems, basically, from a bottleneck

in the educational process. It is customary that a prospec-

tive hardware designer have a sound education. If he does

not, he is expected to demonstrate that he possesses equiva-

lent knowledge and experience. Lacking this, he may be

engaged as a technician or designer's assistant, but not in

a designing capacity. In the software field the situation is

different. Any previous experience, almost regardless of

quality and length, is implicitly assumed to be a more than

adequate preparation for designing software systems. Seldom

is a prospective software system designer expected to have

fulfilled any particular formal educational requirements.

While the persons selecting these designers are not really

satisfied with the results, they do not, in their opinion

have any other choice. Truly qualified software designers

are simply not available in the quantities needed. The

bottleneck, caused fundamentally by the rapid growth of the

computer field, is aggravated by concentration on short term

benefits. To obtain maximum benefit now, valuable resources

are being diverted from the education of future progrz. :-ers.

Potential teachers go to the industry or are doing research;

potential students are deployed as poorly prepared program-

mers instead of as good software engineers. [Ref. 7].

The shortage of qualified software practitioners is

further aggravated by frequent conversions of a technical

nature. Considerable manpower is required to convert from

one computer system to another, from one operating system to

another, from batch to on-line operation, from traditional

file management systems to data base management systems,

etc. While most such conversions are motivated by the

16

.N

is incurred during the system's lifetime for maintenance

(i.e. finding and correcting mistakes not found during

testing, implementing design changes and finding and

correcting mistakes introduced thereby). The large amount of

effort expended in testing should be a clear signal that

something is fundamentally wrong with our approach to soft-

ware development. However, this message is not apparently

getting through to the concerned people. [Ref. 7].

B. CAUSES OF SOFTWARE CRISIS

Why do we have this software crisis? There are several

reasons for this.

1. Disequilibrium

One reason which has already been mentioned is that

due to technological breakthroughs in the mature hardware

industry, the hardware costs are going down. As the hardware

is becoming more affordable, software is becoming more

complex and expensive. Cheaper, affordable, and better

* hardware demands more and more of software, which is scarce.
Demand has far exceeded the supply causing disequilibrium in

-;. the market.

2. Shortage of Software Practitioners

Another reason is that there are too few programmers

and they are not as good as they should be, as will be

evident from the discussion on variances in programmers'

productivity, in Chapter IV. Right now, it appears that the

software industry needs every living, breathing programmer

it can get, almost regardless of quality. While marginally

qualified practitioners are normally squeezed out of a field

by economic and competitive forces, these forces are more

than counteracted in today's software market by the large

15

II. SOFTWARE CRISIS

A. WHAT IS THE SOFTWARE CRISIS?

> The software crisis refers to a set of problems that are

encountered in the development of computer software. The

problems are not limited to software that does not function

properly. Rather the software crisis includes problems

attached with the development of software, maintenance of

the mammoth amount of software, and keeping pace with the

ever-increasing demand of software. The software crisis is

characterized by many problems: Schedules and cost estimates

are often grossly inaccurate, cost overruns of an order of

magnitude have been experienced, schedules slip by months or

years and software quality is often suspect., [Ref. 5].

Every engineering discipline has its collapses but they

occur more frequently in the area of software development.

The collapse of a building or a bridge during construction

is a newsworthy event because it occurs rarely. Another

point is that whenever these errors are discovered, the

perpetrator is expected, and is normally legally obliged to

make amends. Major collapses are so frequent in the software

field that almost none of them receive much attention. They

are accepted as the norm and so the perpetrator is not

expected to make amends. Moreover, he cannot usually be

identified. [Ref. 7].

According to an established rule of thumb in software

production, testing accounts for about half of the develop-

ment effort of a typical software system [Ref. 61. The

remaining half is divided equally between program design and

coding. After development is pronounced complete, consider-

able additional cost--often more than the development cost,

14

techniques, and methodologies available for use; and there

are many planning and control, and project management tools

that can be utilized. In fact, these are being used by

almost every organization dealing with software, but the

crisis still remains. It is therefore the macro issues which

need to be looked into, and it is the problems at the soft-

ware industry level which nee,' to be rectified. Unless

these are remedied, no number of tools and techniques, how

sophisticated they may be, can take the software out of the

crisis.

The terms programmer, software engineer, software devel-

oper, software person, software practitioner and software

professional are used at different places in the text. They

are used just to highlight that all these terms can be

encountered by a manager in the real world. They all are,

however, synonymous.

13

. . -.' ' " '- - - -, . . ,- . • . .- , . , -,

B. APPROACH

Life is a flowing stream. Some people climb aboard a

raft and float comfortably downstream, relaxing and enjoying

the scene. Others paddle furiously upstream, determined to

explore what is there. [Ref. 4]. This is an upstream

thesis. It is expected to be controversial because it take-

the difficult approach of solving the software crisis,

rather than accepting the mere existence of the crisis.

This thesis is about the crisis being faced by the

software--the programs that are needed to make the computer

perform its intended tasks. It is intended to be a guide

for the managers, and is therefore in purely non-technical

language. Buzzwords and jargon have been avoided to a large

extent, except when their use was extremely necessary for

the sake of clarity. It is based on hammering the software

crisis with a common sense approach of management, rather

than with complicated equations and formulas. Technical

tools and techniques are therefore not discussed in this

thesis. Software has not been considered as something

special, mystical, or unique. Instead, it has been treated

like any other product. Being a product, all the managerial

theories and practices are applicable to it. It needs plan-

ning, control, and project management techniques such as

PERT and CPM. However, they are not discussed in this

thesis. The reason for this is that it is not the scarcity

of techniques or tools for software development, or tools

for project management, or planning and control at the

organization level, which are responsible for the crisis. On

the other hand, it is the lack of managerial attention at

the macro level, which is plaguing the software industry.

Therefore, the focus of this thesis is on the management of

issues for which the software industry as a whole is respon-

sible. There are plenty of software development tools,

12

inefficient or expensive to put into use, nothing happens to

the programmer. Unlike the traditional craftsman, he does

not get eliminated from the market. The reason for this is

that there are less programmers available in the market.

The method of training of the craftsman is also distinc-

tive. No formal instruction in reading, writing or arith-

metic is required. A young boy would be apprenticed for

several years to a master, and serve as his drudge, assis-

tant and a whipping boy. In return, he would have the privi-

lege of watching the master at work. At the end of a

satisfactory apprenticeship, he might be worthy of employ-

ment as a paid assistant. After an even longer time, he

might become an independant craftsman and hand on the craft

to a new generation of apprentices.

This method of training seems to be similar to the

methods of training of software developers. Reading, writing

and other educational knowledge is not considered important

and relevant for the software developer. After a few weeks

acquaintance with the esoteric mysteries of some standard

programming language, he is thrust into a team engaged in

*- some half-finished project. Some small and unimportant part

of the project is allocated to him. When the project is

complete, or even before, the experienced members of the

team go off to start a new project, and he is left behind on

care and maintenance duties. If he is lucky as well as wise,

he may learn the software development process by trial and

error and by watching the other experienced programmers.

[Ref. 12].

It is apparent froia the above discussion that treating

software development as a craft is a major cause of the

* problems existing in the software arena. This approach may

be all right for simple and trivial projects, but is

certainly not appropriate for large and complex projects

which require much more than merely the skills and experi-

ence of a craftsman.

26

B. SOFTWARE ENGINEERING

Since the craftsman approach is not suitable for the
software of today and tomorrow, it is proposed that the

activity of software development is by nature an engineering

discipline which is not generally regarded as such in the

society, today. Some of the most serious consequences of our

current non-engineering approach to programming are:

[Ref. 8]

- disappointing and shoddy products, often containing

simple errors of a fundamental nature.

- Unnecessarily low productivity.

- diversion of a tremendous amount of effort to unproduc-

tive tasks.

- frequent failures of such size that major projects must

be aborted at a later stage of development.

- generation of fear, confusion, frustration and misun-

derstanding among direct and indirect users of computer

based systems.

The solution therefore lies in going for an engineering

approach; but the question is, is programming an engineering

discipline? In 1828, on the granting of a charter to the

Institution of Civil Engineers, Thomas Tredgold defined

Civil Engineering as "the art of directing the great sources

of power in Nature to the use and convenience of man." A

computer is not a natural force, but its raw computational

power outstrips the mere human calculating ability even more

than the steam engine outstrips the puny muscular strength

of man. So, this can be taken as the definition of the

ideals and objectives of Software Engineering: to direct the

great computational power of electronic digital computers to

* the use and convenience of man.

So far as engineering in general is concerned, one can

define engineering as those fields of activities which are

27

concerned with applying the physical laws of matter and

energy to the construction and operation of useful machines,

buildings, bridges etc. While this was an adequate defini-

tion a century ago, it is too restrictive today. It seems to

miss, for example, the essence of that part of electrical

engineering concerned with electronics. While matter and

energy are necessary aspects of the implementation of elec-

tronic devices and systems, the purely mathematical aspects

of signal processing would seem to be of more fundamental

importance. The abstract aspects of the various building

blocks used by the electronics engineer and the manner in

which he interconnects them to form a system with character-

istics different from those of its constituent parts seem

somehow to be more essential than the physical embodiment of

those elements and systems.

In deciding whether programming is an engineering disci-

pline, the following questions must be considered:

1. Does a significant body of scientific and mathemat-

ical knowledge exist which is relevant to program-

ming?

2. Has the programmer mastered a substantial part of

that body of knowledge?

3. Does the programmer actually make use of this knowl-

edge while performing his work?

4. Does the final output (software) take an identifi-

able, tangible form?

5. Is the software produced of practical value?

To answer the first question, whether the body of knowl-

edge relevant to programming is significant and whether a

substantial part of it has been mastered by any particular

programmer are, of course, subjective judgements. To make

these judgements, it is useful to draw comparisons with

other accepted engineering fields. We can ask if the body of

scientific and mathematical knowledge relevant to

28

programming is similar in character and size to that rele-

vant to accepted engineering disciplines. On going through

the professional literature, we find that the body of scien-

tific and mathematical knowledge relevant to programming has

become qualitatively and quantitatively comparable to other

engineering disciplines. Before 1960, this this was probably

not true. Around 1970, the point could be argued. Today, it

is true.

The answer to the second question is somewhat in

negative. Few programmers have acquired formal academic

education in software engineering. The others have tried to

acquire similar knowledge through other academic degrees,

short courses and experience. At the moment, most of the

programmers cannot be classified as engineers so far as

formal educational standards are concerned. However, as

proposed in the next chapter, it is possible to overcome

this setback.

The third question should cause a little controversy.

Most programmers do regularly use in their work much of the

relevant computer science knowledge they have. They may also

make use of a larger fraction of their store of professional

knowledge in their daily work than engineers in other disci-

plines typically do. They could also use much more of soft-

ware development knowledge, provided they have the

opportunity to acquire it.

The fourth question can also be answered affirmatively.

A finished piece of software takes on several identifiable,

tangible forms: printed listings, magnetic recordings, elec-

tronically stored patterns, video displays as well as

various types of documents intended for human readers. The

behavior exhibited by a software system (or more precisely,

by a computer executing the software) can be observed,

tested and measured.

29

-. -,.' oO o . .. **-**. .** **..% * . . -' . ,' . .% .° . • .o . _° , ' , . , " ° . . ." .• ° ., ,, °

While not all software, after it has been produced, has

any practical value, much of it must be of considerable

practical value--otherwise we would not expend ever

increasing amounts of effort to produce more and more.

Almost all, if not all, software produced or attempted was

at least originally intended to have practical value, that

is, to satisfy some real need. Even the recent wave of game

software for microcomputer systems must be recognized as

satisfying a demand for entertainment and therefore as

having practical value. Much of it certainly has economic

value.

Thus, after answering the above five questions, it is

evident that programming is an engineering discipline.

However, few writers and professional groups have recognized

it as such. The term "software engineering" was used, more

in a provocative than in a descriptive manner, as early as

1968, when the NATO Science Committee sponsored a conference

in Europe on that subject. The term "software engineering"

was chosen as the title of the conference to express the

need for software manufacture to be based on the types of

theoretical foundations and practical disciplines that are

traditional in the established branches of engineering.

Since 1975, the Institute of Electrical and Electronics

Engineers (IEEE) has been publishing a journal entitled

"Transactions on Software Engineering". Also, since the

mid-1970's, several professional societies have sponsored

various conferences and symposia with titles including the

term "Software Engineering".The Association for Computing

Machinery (ACM) has founded a Special Interest Group on

Software Engineering (SIGSOFT).

While a definite trend toward the recognition of

programming as an engineering discipline can be discerned in

the professional, technical and trade literature, this trend

is not a strong one. Such recognition has not yet become

30

.

widespread by any means. Programming is probably more

widely recognized as an engineering discipline in academic

computer science circles and among graduates of computer

science programs than anywhere else. Such recognition is

probably less pronounced among software houses and other
software producers. Most purchasers and users of software

products would undoubtedly respond to the suggestion that

programming is an engineering discipline with an unbelieving
smile. While they might wish that this were the case, and

might feel that it should be the case, few, if any, would

agree that this is the case today. Only few people connected

with the software industry have ever really given the matter
any serious thought at all. [Ref. 7]. It is high time that

managers in the software industry give full recognition to

software as an engineering discipline and direct future
research and development in this direction.

31

IV. SOLUTIONS

A. ALTERNATIVES

On examining the serious impact of software crisis on

every walk of life, it seems prudent to find ways to over-

come it. The following alternatives will be discussed in an

attempt to come up with viable solutions to the software

crisis.

1. Status Quo.

2. The Technical Approach.

3. The Missing Link.

1. Status Quo

A computer is such a useful tool that even when

sloppily applied by beginners and amateurs, the net

benefit--after due consideration of the collapses--is still

great. Since the benefits are so great, one might ask, "What

is really so bad about the current state of affairs? Large

quantities of software are being produced which is of

con;iderable value to its users. While this situation

prevails, there is really no problem." While the software

industry can be proud of the abilities acquired and of posi-

tive results achieved, it must be aware of unjustified self-

laudation and its likely consequences. The success of

software should not be interpreted to mean that a good job

is being done, but that more or less by accident, the

industry has stumbled onto a good thing. The damage done by

software failures in the past was almost always reversible;

in the future, it is likely that more and more irreversible

damage will be done if serious effort is not applied to

change the status-quo. [Ref. 7].

32

21, I

...

An argument in favor of maintaining the status quo

is that attempting to seek perfection is not really neces-

sary in software. If a bug in software affects the system

once in several years and causes, say 1% error in a non-

critical result, the intuitive conclusion one draws is that

no attempt should be made to achieve perfection. However,

the question arises that how will it be possible to ascer-

tain that an imperfect program contains only minor errors.

Therefore, logically, it should be endeavored to minimize

errors to the maximum extent, to foster confidence in the

program. Though perfection is not practically possible,

trying to achieve it, is a path towards gaining confidence

in programs.

Another argument is that only that software should

be developed, which is humanly possible. This scaling down

of aspirations can eliminate software problems. This argu-

ment also does not carry weight because it is a human

instinct to look forward and grasp things which are beyond

reach i.e. to never be satisfied with the status quo.

[Ref. 13]. Moreover, what is there to be satisfied with?

The problems are immense and the impact of software is so

great on all human activities that maintaining the status-

quo does not appear to be a plausible alternative at all.

2. The Technical Approach

Several concepts, technical tools and methodologies

are being proposed without analyzing them in pragmatic

depth. Structured programming, Top-down coding, modular

design, HIPO (Hierarchy plus input-process-output), are just

a few examples of such concepts. No one ever does cost-

benefit analysis of these concepts, before proposing them

for implementation. It has never been ascertained if elimi-

nation of "GO TOs" is worth the price of pre-compilers, or

if "top-down coding" is really practicable. [Ref. 14].

33

-7

The person suggesting a new concept is confident in

his mind and makes others believe that this one will somehow

work, and the world will be relieved of the software crisis.

When it doesn't work, the argument is given that it was not

applied properly. Even after proper application, not much

fruitful results are achieved. Then the software world

believes that this was not the right concept, and waits for

the right one to to be discovered to solve their problems.

The next concept is however, no better than the previous

ones.

Having tried so many concepts, it is time that the

software world understands that emergence of omnipotent,

magical, and panacean concepts, tools, and methodologies, to

wipe away the software problems, is not likely.

3. The Missing Link

Having seen that the above three alternatives are

not feasible, active steps must be taken to change the

status-quo. The most important change which must be made is

to "get down to basics." On getting down to basics, it

becomes evident that a vital link is missing. Several soft-

ware development techniques and toi s are available and much

research is going on in this direction. What is missing is

the link of management which is so important a link that it

forms the base of all software activity taking place in any

part of the world. Yet management has been overlooked, due

to the dominance of scientists and technicians in the soft-

ware industry.

The management discipline can be divided into

project management, general management and higher-level

management. Project management is involved with the day-to-

day activities of a project. General management is at a

level above a particular project organization. Higher-level

management is at a level further above, going beyond the

34

boundaries of organizations and falling in the domain of the

industry as a whole. Even though the first two categories

have not been totally exploited and made fully applicable,

it is heartening to observe that at least there is a consid-

erable awareness of these among the software developers and

managers. It is the absence of higher-level management,

which is plaguing the software industry. To overcome the

crisis, it is imperative to strengthen the base of the soft-

ware industry. Hence, the ensuing discussion will be devoted

to this high leverage category of management.

B. EDUCATION

Just as a fine surgical instrument is of value only when

in the hands of a professionally trained and skilled

surgeon, so are the tools and techniques of software tech-

nology of full value only when applied by professionally

trained and skilled software engineers. Much more emphasis

should be placed on building the educational base of the

software developers. Much less emphasis should be placed on

the search for magical, panacean tools and techniques.

If one traces the productive ancestry of any software

system, ultimately the human brain will be found to be its

original progenitor. The human brain is, therefore, the

primary factor of production, of software. In hardware,

there is much emphasis on the factors of production like

technology and technological skills, but unfortunately much

emphasis is not found on the software's factors of produc-

tion. A software system can be only as good as its develop-

ers' intellects are capable of making it. To improve the

quality of software, the quality of the intellects which

produce it must, therefore, be improved. To increase the

quantitative capacity to create software, the requisite

knowledge and skills must be transferred to a great number

35

. °

of human minds. In other words, to improve the quality of

software, better education must be provided for the software

practitioners; to increase the much talked of "programmer

productivity", more practitioners must be educated.

Providing more and better tools and techniques to practi-

tioners inadequately equipped intellectually to employ them

creatively will not solve the software problems.

Only a small fraction of the programmers of today have

completed formal academic programs. While some others have

acquired comparable knowledge in other ways, many practi-

tioners have not mastered a substantial part of the relevant

body of knowledge. Thus, even if one does conclude that

programming is an engineering discipline, not all program-

mers of today can be considered as engineers. When consid-

ering the educational needs resulting from the application

of software technology, it will be worthwhile to consider

the educational paths followed by those persons technically

responsible for the application of older technologies to

society's various needs. The designers and developers of any

product e.g. buildings, ships, aircraft, are all required to

have completed a several years of academically oriented,

university level course of instruction, before practicing

their professions. The situation is different in tihe soft

ware field. Instead of a university education, reliance is

on short courses in programming in the hope that the

programmers will do wonders on completion of such courses.

Only two institutions, Seattle University and Wang

Institute, have awarded master's degrees in software engi-

neering. The demand for such University graduates is much

more than the supply. Therefore, it is imperative to widely

introduce undergraduate and graduate degree courses in soft-

ware engineering. Software practitioners should also

specialize in a particular application area, such as busi-

ness software, and scientific software, so that they have

36

adequate knowledge of the system they are developing.

Managers must ensure that they are deployed on software

development in their area of specialty. Unless concerted

efforts are applied in this direction, the gap between

supply and demand of software engineers will continue to

widen.

It is striking that the developers of computer hardware

are academically trained engineers in contrast to the soft-

ware developers, most of whom do not possess academic

degrees in their area of specialty. It in no way implies

that all the credit for this state of affairs goes to the

hardware people; nor does it mean that the software managers

are dummies. It is just that the academic programs of the

hardware designers evolved naturally from already well

established courses of study in electrical/ electronics

engineering. The evolution took place for the most part

within the existing large departments of electrical engi-

neering at recognized academic institutions. It was not

necessary to found new departments and faculties to estab-

lish the organizational base for sound engineering programs

in computer hardware development. In the software field, the

situation was much different. Academia experienced much

greater problems as no natural base existed on which soft-

ware engineering could grow in a natural way. However, the

sad part is that even after about thirty years of software

life, the situation has not changed much. [Ref. 7]. A few

curricula for graduate and under-graduate degrees in

Software Engineering Engineering have been proposed but not

widely implemented. A curriculum for Masters degree in

Software Engineering was proposed by Peter Freeman in 1978

[Ref. 15]. Seven years have passed but this curriculum is

still in the proposal stage. When long delays in the soft-

ware development development process, are observed, it

becomes clear that the people in the software industry have

37

become accustomed to procrastination, which explains why the

curriculum is yet a proposal. In fact, there is need for a

much comprehensive curriculum which includes more of mana-

gerial courses and application area courses. The proposed

curricula are dominated by courses dealing with various

tools and techniques of software development, some of which

can easily be substituted by managerial courses. The intro-

duction of an equal amount of management courses is also

supported by the definition of software engineering, which

states that software engineering is the application of

sound, established engineering and management principles to

the analysis, design, construction, and maintenance of soft-

ware and its associated documentation.

One of the causes of the software crisis is that instead

of emphasizing education for the software engineers, an

alternate route has been taken. In an attempt to circumvent

the shortage of qualified software engineers, conscious

efforts have been made to deskill programming. By creating

the impression that programming requires only minimal

skills, highly capable persons have been discouraged from

becoming programmers and too many with marginal aptitude and

marginal educational qualifications have been encouraged to

join the rank of programmers. This effect is more pronounced

in the European and Asian countries, where until recently it

was socially unacceptable to place a college graduate in the

position of a programmer. This effect still persists in the

under developed countries. It is therefore, understandable

that the quality of the software being produced would be

low. If aircraft piloting was deskilled, an increase in the

number of crashes would certainly be expected; or if civil

engineering was deskilled, a drastic increase in the number

of collapses would be observed. [Ref. 7]. Deskillment of

programming is therefore, not acceptable. Managers must take

cognizance of the consequences of this approach and make

serious efforts to curtail progress in this direction.

38

There is no kit bag of tools and techniques which if

learned can ensure success of the software engineer.

Software engineers must have a university education

comprising of courses in business, management, mathematics,

and computer hardware and software plus an application area

in which they desire to specialize. Education is also vital

for the users and the management. They need not be program-

mers but at least they should have enough knowledge of the

important tool they are using as an aid to their day to day

activities.If they expect the computer to provide aid to

them, they should also learn to provide aid in the develop-

ment of its software.

C. SHORT-TERM ALTERNATIVE TO EDUCATION

It is understandable that the revision and implementa-

tion of software engineering curricula will take consider-

able time. Meanwhile organizations have only two choices.

One is to Aire people with degrees in other technical disci-

plines such as computer science, electrical engineering or

mathematics. The other choice is to lure software engineers

from other organizations. None of these choices are satis-

factory. Persons with degrees in other disciplines will be

lacking in the requisite knowledge required of a software

engineer. Robbing Peter to pay Paul is also not a wise solu-

tion, as it only shifts the problem to other organization.

The problem of the industry still remains.

McGill gives a third choice of cross-training of own

experienced engineers in the discipline of software engi-

neering, by various organizations. [Ref. 16]. This

training can be conducted in-house with the help of quali-

fied and experienced software engineers and managers. Such

training should cover managerial as well as technical

subjects deemed essential for effective and efficient

39

whereas in the real world, cutting and pasting from other

programs to make new ones is expeditious and wise. Sharing

is therefore, considered bad by the programmers even when

they are confronted with large public programs.

The solution to this "re-inventing the wheel"

syndrome is to teach programmers to share. They should be

taught to develop large public programs, but the conversion

from private to public programs should not be sudden and

abrupt. At first, they should be given experience in working

with small public programs and then they should be involved

in larger programs. Managers should make the programmers

understand that any program worth writing will be useful to

someone, sooner or later. Therefore, they should make the

software reliable at the first instance, keeping others in

mind. For this purpose, they should plan for the software to

be public, and should design and document the programs and

label all outputs. [Ref. 20].

J. TRANSITION FROM LABOR-INTENSIVE TO CAPITAL-INTENSIVE

INDUSTRY

Software development is predominantly a labor-intensive

activity. Research efforts are going on to automate the

development process, but it still remains a manual task. If

the situation does not improve, the requirement of software

engineers which are already scarce, will increase manifold.

Martin estimates that there are presently 300,000 program-

mers in the United States, and predicts that 28 million

programmers will be required ten years hence, unless there

are drastic changes in the manner in which software is

developed [Ref. 21]. On the other hand, hardware which is

capital-intensive, is getting cheaper. IBM 370 equivalent

computer has got down to a single card with three micro-

processor chips, and it is expected that eventually, it will

53

1. Private Programs

Private programs are written by students which do

not have to be reliable, portable or documented. Such

programs are a kind of one-to-one communication between the

programmer and the computer. They are considered as personal

objects whose sole owner is the programmer. The tasks of

specification, design and implementation, all are undertaken

by one person. These programs are discarded soon after they

are run.

2. Public Programs

Public programs are usually written by more than one

person. They are generally large and complex, and so it is

not possible for one person to undertake all the tasks of

specification, design, and implementation. They have to be

reliable, portable and documented. They usually tend to have

a long life.

Programmers are not trained to write public -*

programs. Their training process focuses on writing small

private programs. Such type of training creates an attitude

that programs are perponal property and if the authors can

run them, it is a job well done. The students learn to write

small programs which do not have any practical utility and

are merely for getting to know a certain programming

language. Partly, due to time constraints in an academic

courses, the programmers get the misconception of writing

private programs. These poor programming habits and atti-

tudes, which are ingrained in the programmer by the educa-

tional system are hard to change later. They keep thinking

that programs are personal property and so cannot be shared.

Moreover, building on programs of others is questionable in

the academic circles whereas it is common sense the real

world. In the academic world copying is conside ed wrong,

52

- - .. , .. °

issues, to carry out their job efficiently. There is a word

of caution, however. The management-technology overlap

emphasizes learning of the required discipline by both the

parties. It in no way implies taking over the jobs of each

other. A common problem observed in developing software is

that competent technical people become managers and spend

most of their time dealing with administrative problems at

which they are less competent. There are several solutions

to this problem. First, technical people should not be

promoted to managerial positions, on the pretext of job-

recognition. Their career paths should be established within

their own specialty. This point is covered in depth in a

later chapter. The second solution is the inclusion of

managers/administrators in software projects. Finally, team

form of leadership, with one person providing technical

guidance, and the other handling administrative matters, is

another alternative. [Ref. 19]. In no event, the technical

people, no matter how competent they are, should be made

managers, as they will always make either mediocre or poor

managers. Loosing a good technician, and getting a bad

manager is not a plausible alternative.

I. REINVENTING THE WHEEL

It has been said that programmers always try to reinvent

the wheel. They waste a considerable amount of time in

discovering facts which are already known. The only way to

avoid this syndrome is to share. If the programmers share

each others work, they can increase their productivity and

reduce frustration.

Programs can be divided into two broad categories.

- Private.

- Public.

51

H. MANAGEMENT TECHNOLOGY OVERLAP

In software development, there are both technical and

management problems, and there is some overlap between them.

Technical problems include coding techniques, design methods

and programming standards. Management problems include, for

example the aspects dealing with people, like training,

motivation, turnover, scheduling of jobs, etc. However,

overlap occurs on many items. For instance, documentation of

software is both a technical and a management problem.

Generally, documentation is regarded as the thing to be

checked to ascertain quality of the software package, which

is not correct. Quality can be evaluated only from the

listing of the program, as it truly represents a software

product. It is the only fully accurate and up-to-date repre-

sentation of the code which computer executes. Managers are

charged with the responsibility of evaluating the quality of

the software product, whether they accept it or not.

Nonetheless, they tend to avoid reading the program listings

because they lack the required technical competence. They

like reading english like documentation and evaluating the

quality on a wrong basis. Managers who do not read program

listings cannot tell whether the documentation is correct or

not. Therefore, the programmers take advantage of this hand-

icap of the managers. Programmers are too bored with each

others code and testers do not have to look beneath the

behavior of the program. Ultimately managers are responsible

for the quality and they also do not do the right evalua-

tion. It is not because they do not want to, but it is

because they do not have the ability to do so. As a result,

the poor software suffers.

Therefore, managers must learn some of the technical

aspects of software development. Likewise, the technical

persons must learn some of the managerial and organizational

50

."..

never be published in Datamation, and even if it does, no

one will understand it, as the jargon of academicians are

different form the industrial world. Then, one can find

mutually exclusive audience in academic computing confer-

ences and industrial computing conferences. Academicians do

not understand the immense complexity of the industrial

world and industrial people do not understand what the acad-

emicians are doing for them.

One more problem is that the practitioners don't write.

The "Publish or Perish" syndrome forces academics to write,

and write too much. The "Proprietary" syndrome forces the

practitioners in the opposite direction. There are brilliant

practitioners who can benefit the software industry by

sharing their experiences with others. Managers must there-

fore, encourage them to write, and bring their experiences

to the public's knowledge, by remaining within the confiden-

tiality limits of their organization. [Ref. 14].

The gap between both these professionals must be bridged

if the computer industry in general and software industry in

particular, is desirous of attaining any synergy. One way to

bridge this gap is to have greater contact between them

through university-industry exchange programs. The practi-

tioners should take regular courses at universities and the

academicians should spend regular periods in an industrial

environment. This can make the academicians/researchers

aware of the needs of the practitioners, and make practi-

tioners capable of meeting the demands of changing tech-

nology. [Ref. 18]. Both these factions can gain a lot from

each other, which will in turn be beneficial to the industry

as a whole. If the academicians and the industrial people

join hands and work in the same direstion, there is no doubt

that the days of software crisis will be numbered.

49

G. BRIDGING THE GAP BETWEEN ACADEMIA AND INDUSTRY

Let us look at the academic and industrial world of

software. Researchers in the academic world go for those

things which they consider interesting. They are rewarded

for this by the recognition of their peers. In the indus-

trial world, researchers go for those things which they

consider useful. They are rewarded for this by the recogni-

tion of their management.

This conflict of interests is not a minor thing to be

ignored. The academician looks with some disdain on things

which are merely useful. The industrial person looks with

some disdain on things which are merely interesting. Each

side is thus making judgements about the basic goals of the

other. Actually, the pursuit of interesting work is an ethic

to the academician, and the pursuit of useful work is an

ethic to the industrial person. Proofs of correctness,

requirements language and symbolic execution are examples of

things which are interesting but not really useful, and so

they interest the academician. Testing, requirements reviews

and peer code reviews are useful but not really interesting,

and so they interest the industrial person. Where does this

dichotomy leads to? Well, it leads to lack of knowledge

sharing. The researcher who pursues primarily interesting

problems communicates poorly with the researcher who pursues

the useful ones.

It is time for academic and industrial people to review

their ethics. There is no problem in working on interesting

or useful problems as both are legitimate. The problem is

disdain on each others part and lack of knowledge sharing.

There are other differences too between the academicians

and the industrial people. One major problem is that they

don't talk to each other, and even if they do, they will not

understand each other. Journal of ACM kind of article will

48

7 L 7 .

-' °- • r r 7 -. . , . • . . o . - , . . -

From air-conditioned, carpeted offices to temporary build-

ings at a far-flung site, there is not and cannot be a
"one-only" working environment for the typical programmer.

The idea of providing a good working environment

as a step towards increasing programmer's productivity, and

thereby overcoming software crisis, sounds trivial.

Nevertheless, this apparently trivial aspect has serious

implications on the long run. Working environment does

affect performance. The famous Hawthorn studies dealing with

the effect of lighting on productivity, supports this

contention. Now the question arises that what is really a

good working environment for a programmer? Unfortunately,

the computer literature has not much to say on this subject.

Apart from the normal comfort requirements like

lighting, air-conditioning, and heating, there are some

aspects of programming which call for unique needs in a

working environment. The programmer must understand the "big

picture" of the problem he is involved in, and be able to

discuss it meaningfully with his management and customers.

He must also work at the nitty-gritty level with coding

sheets and memory dumps in a foreign language. The working

environment should cater for these diverse requirements. In

the big picture realm, there should be conference rooms to

which the programmer and his superiors may retreat to haggle

with a customer, without disturbing others. Conference rooms

can also be used for meetings of team members involved in a

project. In the nitty-gritty realm, the programmer must have

an independant office where he can go for thinking and

coding. [Ref. 4] Apart from providing an isolated

environment suited for thinking and coding, separate office

will also enhance the status of the programmer. After all,

he is a human being first, and then a programmer. His needs

are therefore, more or less same as any other employee in

the organization.

47

basic programs cannot make a student a programmer. Much more

exposure to programming and to other software development

tools and techniques is required.

b. Certification

The second solution to increasing programmer's productivity

is certification of software engineers. There is certified

data processor exam and the ACM self-assessment program, but

their results also show no correlation with on-the-job

performance, because the persons who obtain such certifica-

tion are obviously better data processing or computer

professionals but not better software engineers. Therefore,

as proposed earlier ISE must be established soon, which

should provide certification of software professionals.

c. Right Man for the Right Job

With appropriate education and certification,

individual differences in programmers efficiency will be

reduced but not totally eliminated. After all programmers

are also human beings and they are not meant to be alike.

The programmer armed with educational and professional qual-

ifications, needs to be evaluated by the management. On the

basis of this on-the-job evaluation and experience, program-

mers must specialize in the areas of interest in which they

have natural aptitude. Some programmers will be better in

coding, some will have a natural talent for debugging and

some will be good in planning or maintenance. Onus lies on

the management to ensure that right man gets the right job,

if overall productivity has to be increased.

d. Environment

The programmer of today has a rich variety of

projects at hand. The environment in which the programmer

works, varies with the projects on which he is involved.

46

.

improvement in efficiency with ,greater programmer
experience. Clearly the programmers experience is a
major factor in achieving nign efficiency.

3. How to Increase Programmer's Productivity

a. Skills

The problem is evident from the work of these

researchers, but the solution is not clear, i.e. How to get

the right people? There has been a period of aptitude tests

that did not prove successful. There was not much correla-

tion between test scores and performance. The SDC study also

substantiated this fact apart from proving that there was

not a consistent correlation between class grades and

performance, as well. It means that neither the aptitude

tests nor the academic performance are true predictors of

on-the-job-performance. The challenge, therefore is to

improve the individual skills to increase the programmer's
productivity. To face the challenge objectively, first,

educational standards of the programmers must be improved.

If education has no correlation with on-the-job performance,

something is wrong with the educational system. If the

programmer's efficiency increases with experience, it is an

indication that there is plenty of room for improvement in

his skills when he graduates. This gap between the quality

of education and the skills required by the software

industry must be bridged. There is no short-cut to experi-

ence, but proper academic programs leading to a degree in

software engineering can certainly enhance the skils of the

software engineer. The existing programs in computer science

or information systems are not bad. These programs are sure

to provide good computer scientists or managers to the

industry but not good software engineers. One or two courses

in programming languages are not sufficient. Six or seven

45

7S

S

2. Factors Affecting Programmer's Productivity

While all the factors discussed earlier affect the

programmers productivity, there are certain other factors

which must be taken into consideration. One factor crucial

to productivity is that there are tremendous differences

between programmers. In 1968, three SDC researchers -

Sackman, Erikson and Grant concluded that the most important

practical finding of their research was that striking indi-

vidual differences existed in programmer performance

[Ref. 30]. They found that

- Capability to debug differed by factors up to 28-1.

- Capability to code differed by factors up to 25-1.

- Timing efficiency of the resulting program differed by

up to 11-1.

- Sizing efficiency differed by up to 6-1.

Schwartz, while studying the problem of developing

large software systems came up with similar findings. He

found human factors at the heart of the problems and stated

"within a group of programmers, there may be an order of

magnitude difference in capability" [Ref. 31]. In 1973,

Barry Boehm observed productivity variation of 5:1 between

individual programmers. In 1978, Myers found [Ref. 32].

There is a tremendous amount of variability in the indi-
vidual results. For instance two people found only one
error, but five people founA seven errors. The vari-
ability among student programmers is generally well
known, but the high variability among these highly
experienced subjects was somewhat surprising--The detec-
tion of individual type of errors varies widely from
individual to individual.

Raymond Rubey, while exploring the impact of higher

order languages on avionics software, wrote [Ref. 33].

A programmer having no prior experience wrote a program
that was 100% inefficient, while an experienced
programmer wrote a version of the same program that was
20% inefficient. Another study reported a 25%

44

K .--..' , "• -* " .[-, -" " L ' °, - " _ " ..,

Software Engineering should be taken out of the domain of

IEEE and the Institute of Software Engineers (ISE) be estab-

lished. ISE can lay down standards and code of ethics for

the software engineers. It can also carry out certification

of the software engineers based on qualifying on an examina-

tion encompassing all the required disciplines. Besides the

long-term benefits, ISE can also provide a short-term solu-

tion to the problem of inadequate qualifications of the

software engineers. Finally, it can foster wide-spread

recognition of the importance of software and thus facili-

tate elimination of the software crisis.

F. PROGRAMMER'S PRODUCTIVITY

1. Why Increase Programmer's Productivity?

Mankind should not strive to do everything which is

technologically possible. This statement stems from the

following two propositions.

1. Man should strive to achieve the technological capa-

bility to do whatever he decides he should do.

2. Man should not do everything which his technological

capability enables him to do.

The application of the first proposition places a
responsibility on managers to strive to improve the abili-

ties of programmers to create software which does what has

been specified and does not do anything else which could

cause injury, loss or inconvenience to the society. This

proposition also places a responsibility on managers to

strive to improve the programmers productivity. While

productivity does not effect what one can in principle do

with a given technology, it does effect, what society can in

practice do with it. [Ref. 7]. Hence the importance and

need for increasing the programmers productivity.

43

make any formal representation regarding his personal quali-

fications or abilities; instead he guarantees that the

services rendered or goods delivered will satisfy previously

agreed standards or specifications.

At present, software is a no man's land. Neither a guar-

antee of the correctness of the software is given nor any

formal representations regarding the qualifications of the

software developers are made. This is obviously unfair to

the purchaser who has a right to demand some guarantee of

the quality of the software he is obtaining. The typical

software developer neither has the qualifications of a

professional level to guarantee the product nor is he

capable of developing a complex software system in which he

can have enough confidence that he can guarantee it's

performance. Thus, the inability to guarantee the software

is due in both instances to the inadequate qualifications of

the software developer.

As a step towards overcoming the software crisis, the

qualifications of software practitioners must be improved so

that they are able to guarantee something. We have to make a

choice between professionalization and non-

professionalization. Since most of the complex software

being developed is not well within the state-of-the-art,

professionalization seems to be a plausible alternative.

Moreover if the electrical, mechanical, civil and other

engineers are professionals, why can't software engineers be

professionals. Apart from providing a solution to the guar-

antee dilemma, professionalization will help enhance the
abilities and skills of the software engineers. For this
purpose a professional body must be formed on the same lines

as other professional bodies like Institute of Electrical

and Electronics Engineering (IEEE), Data Processing

Management Association (DPMA), American Medical Association

(AMA), Institute of Management Accounting (IMA), etc.

42

-' . ' : '.•,_' :.-' ° ' :. '. ' < ',:./ . 7 ",_ - .:... " L < ' . . """-. : _-L : ' : . [; c ". ' < ". ": . ." : . .:"" -._v '

software and treat hardware as the accessory. This is easier

said than done. Even if the user consciously recognizes this

fact, his subconscious, however, will still perceive the

hardware to be the object being purchased and the software

to be an unimportant accessory. There is an understandable

reason for this psychological effect. To every human being,

even software experts, computer hardware is more tangible

* •than software. The choice of the words "hardware" and "soft-

ware" can be attributed to this common human perception. The

more tangible thing, having more substance, is perceived

esubjectively to be of greater value. While software takes a

tangible form, its essence is perceived as largely intan-

gible and hence of less intrinsic value. No matter how

difficult it may be, this deeply ingrained aspect of human

* psychology must be overcome to subconsciously and genuinly

recognize that software is the actual good being purchased.

Software needs to be recognized not only by the entire

body of users but also by the industry at large. The impor-

tance of software recognition is essential to demand optimum

educational standards of software practitioners and to

induce the academia to take cognizance of this vital demand.

E. PROFESSIONALIZATION

Should software practitioners be professionalized? This

is an important question to be answered. Before coming to

any conclusions, we must have an understanding of the

difference between a professional and a non-professional. A

main difference relates to what they guarantee. The

professional never guarantees results, he guarantees instead

a certain level of personal qualification for performing the

service offered. For example, physicians, lawyers, archi-

tects and engineers do not guarantee success. For the

- . non-professional, the situation is reversed. He does not

41

0°

software development. This is however, not a substitute for

education, but merely a short-term alternative.

D. SOFTWARE RECOGNITION

Managers regard software as a coat of paint on the hard-

ware. What they fail to see is that the hardware to which

the paint is applied is like a street sign. It is useless

without the coat of paint. Furthermore, the paint on the

street sign must be durable, highly visible, in sharply

contrasting colors, and perhaps reflective. The cost of the

paint applied to the sign is low, the time necessary to

apply it is short, and it can be changed easily. Moreover,

the research and development that made the paint durable and

visible and made the graphics of the sign meaningful, is

also substantial. The same paint and graphics applied to a

piece of cardboard convey most of the sign's utility without

any metal. The intrinsic value of the sign, therefore, is

not in the hardware at all, but in the software. [Ref. 17].

From the earliest days of computing, the purchaser has

subconsciously felt that what he was really buying was the

hardware. The software was a minor accessory. This attitude

reflected the cost structure of computer systems upto the

early 1950's, reasonably well. Beginning in the late 1950's

and during the 1960's and 1970's, however, the industry's

pricing policy did not reflect this cost structure and the

typical computer user still had the impression that he was

S buying the valuable hardware and getting the cheap software

as an accessory.

The users must realize that the solution to their prob-

lems lies not in the hardware but in the software. When a

S need for computer arises, they must determine the require-

ment of software. Only then should they select the hardware

required to execute the software. They should really buy the

040

P 40

,. - -.Si -i i -.. .i i ..,i -- .- ..ii i~ - .2i -i - --.. .- -.-i

be available on a single chip. The software development

tasks should therefore, be shifted to hardware, as much as

possible. Software crisis is due to increasing amount of

automation requiring more, better, and complex software.

Automation is the cause of software problems, and it is

automation which can reduce these problems.

54

• . --~ i T- .L-I.. T, I. -ii. . LI . .. -.. .L- .,' '-.[
-

. .- , .- . .- .. .,. L.

V. SOFTWARE AS A PRODUCT

A. THE PRODUCT CONCEPT

Products do not just emerge. They are planned and

designed to meet certain specifications and are built

because management recognizes certain needs which they have

the potential to fulfil in a profitable manner.

Products perform useful functions. Moreover, many copies

of it can be made, manufactured or zeplicated so that there

is usually a large customer base (users/clients) for the

product. Then, they are supported with promotion, training

and maintenance.

Another attribute of a product is that it has concrete

external specifications. Documentation is usually supplied

with the product that describes in detail the functions that

it performs and also how they are performed.

Usually a product is part of a system of products and

must be assembled and installed either by the end-user or by

a specialist representing the supplier. To assist this

assembly, additional documentation is provided by the

supplier.

If a product is new, complex, or different from other

products, then training is often provided. Training can be

given in two ways. It can be a self-instruction process, by

making use of the manuals provided by the manufacturer.

Else, supplier arranges formal classroom instruction, in

case the product is highly complex. Training covers what is

given in the documentation i.e. how to install the product

and how to use the product.

The documentation and training mentioned above covers

the external features of the product. Apart from this, there

55

.0 . . ° - ° ° ° . . ° ° . b . ° . b. • t . "

is other documentation which includes features internal to

the product i.e., how the product works, how it was built

and what parts it uses. Manufactured products can include

manufacturing drawings and specifications, bills of

materials, and sources of supply for parts and raw

materials. For software it includes specifications, list-

ings, programs, data generators and bills of materials. For

maintenance of the product, more internal documentation is

required, which includes enough of the principles of opera-

tion of the product to satisfy the needs of the person

carrying out the maintenance. It also includes specific

instructions for trouble-shooting and for repairing common

malfunctions. User must also have access to maintenance

service or he should be prepared to maintain it himself,

throughout the useful life of the product.

In case of a product having a long useful life, the

documentation also includes adequate internal description of

its operation to allow modification of the product, either

by the user himself or by his technical agent. A major

example of such attribute is the automotive market.

Considerable internal documentation is required by auto

enthusiasts to facilitate performance enhancements or to

exchange engines. Such documentation is used to tailor or

customize the product for a unique use. It is also used to

enhance or upgrade the product when design changes come

about through experience gained in using the product or when

new features are introduced by the manufacturer. Aircraft

industry is a good example: worn out engines are often

replaced with new designs.

Another important attribute of products is quality

control. The product must behave reliably and predictably as

described in the documentation, and identical copies of the

product must behave in exactly the same manner. [Ref. 17].

56

If we examine the above attributes of products, we come

to the conclusion that almost all these attributes are

present in software. Yet, many managers do not treat soft-

ware as a product. A reason often given is that software

cannot be seen or felt. It may be worth noting that products

in gaseous form cannot be felt either, but they are still

considered as products, for example gas filled in a cylinder

can neither be seen or felt, but the fact remains that it is

a product.

B. REQUIREMENTS - THE SOREST SPOT

1. Import and Impact

Requirements definition is the most important phase

of software development as the entire life of the software

product, right from inception to obsolescence depends, on

it. A considerable research is going on to find out means to

automate the software development process. All the phases

of software development can be automated except the require-

ments definition. Human interface will still be required to

determine the needs for the product, and it will thus remain

for the most of the part, a manual and labor-intensive

process.

It is also a well accepted fact that maintenance

occupies a major portion of the software costs. Industry

surveys have indicated that 70% of the software costs are

attributed to its maintenance, and 40 to 95% of the manpower

effort in typical industrial applications occur during the

software maintenance [Ref. 22]. Moreover, most of the main-

tenance is due to changes in the requirements, of which an

over-whelming portion is of the avoidable changes.

57

2. The Users Dilemma

The most common reason of software failure is inade-

quate requirements definition. Maintenance occupies a major

portion of the software costs because the requirements are

not fully defined before proceeding with the development of

the software. The software developers do not know what their

product is required to do. As a result, they produce soft-

ware which is not what it was meant for. Requirements defi-

nition is an essential and most important input to the

software development process. Requirements are needed by

the developer , but are to be obtained from the users, over

whom he has no control. Yet he is responsible. It certainly

sounds odd. How can a person be responsible for something

over which he does not have any control. It is not only

against the basic management principles, it is against

common sense. Nevertheless, the fact remains that the soft-

ware developer is at the mercy of the users.

Users are busy and so is everyone. Software devel-

opers have to urge and beg the users to spare some time for

the requirements. After considerable effort, the require-

ments are given, which are incomplete and usually incorrect.

Users do not take any interest and do not devote much time

to this process on the plea that they are already hung up in

their day-to-day activities. More often, they are not aware

of what they want the computer system to do for them - they

are not cognizant of their needs. In other times, they know

what they want but are not able to articulate it.

Consequently, they develop the following strategies, which

are nicely explained by Laura Scharer [Ref. 23].

a. The Kitchen Sink

This strategy is employed by those users who

throw everything into their requirements definition. The

58

.m

outstanding characteristics of this strategy are exaggera-

tion and a protective overstatement of needs. An overabun-

dance of reports, exception processing, and politically

motivated system features are also symptomatic. The Kitchen

Sink also provides a marvelous cover-up for the user who

doesn't know what he wants but who can bury that fact in the

sheer volume of his requests.

b. Smoking

Known also by its full name, "Smoke Gets in Your

Eyes," this strategy is practiced by the user who sets up a

smokescreen by requesting ten software features, knowing

that he really wants only one of them. The nine extra gives

him a bargaining power, at least he thinks so. The smoker is

usually an experienced user who is consciously manipulating

the definition process as opposed to the Kitchen Sink user,

who is usually naive in believing that he really needs

everything he asks for.

c. The Same Thing

Sometimes a euphemism for the embarrassing

words, " I don't know," sometimes a sign of laziness "Just

give me the same thing I am getting now," are the hallmarks

of this strategy. The latter statement is sometimes quali-

fied in many ways such as "... but more accurately," or ...

but more timely," or "... but computerize it. "The user who

employs the "Same Thing" strategy is often satisfied that he

has told the analysts everything they need to know to

proceed. In fact, the only thing the analysts really come to

know is that the user is not aware of what his current

system does, and that he does not want to take the time for

an introspective review of his own functions and problems.

In all of these three strategies, we observe

that the requirements are not adequately defined. The more

59

-..

interesting aspect is that no sooner the requirements are

given, they are changed. These changes keep coming even upto

the eleventh hour, and the developers keep accepting them

whole-heartedly on the plea that "programs must evolve." "I

didn't mean that," "Actually I want this," "It was then, I

wanted that, but now I want this." These kind of statements

are often heard by the software developers during and after

the development process. One can hear such comments from the

users, minutes before the acceptance phase. Even after

acceptance and implementation, these phrases are not too

uncommon.

3. The Effects

The above state of affairs leads to schedule slip-

pages, excessive maintenance, costs overruns, and software

failures, which is exactly what is known as software crisis.

With constant changes the job has to be redone or code modi-

fied, which consumes time, causes delays and involves costs.

This, therefore makes it difficult for the software devel-

opers to adhere to the schedules and remain within budget.

Inadequate and incorrect requirements definitions, does not

meet the users' requirements, so the software fails to

perform the functions desired by the users, or more

precisely meant by the users.

Another impact is on software productivity. It

appears from the foregoing discussion that software produc-

tivity is dependant on the quality of the users. If users

are cooperative and knowledgeable, the productivity will be

higher and vice versa. Generally, the users do not possess

such attributes, and consequently the software productivity

suffers.

60

. . . -

4. The Answer

It is obvious that we have a dilemma which warrants

serious consideration. As mentioned earlier, software is a

product. Therefore, this problem can be solved by treating

software as similar to any other industrial product. For

illustration purposes, let us take the example of automo-

biles. While manufacturing automobiles, the manufacturer is

not required to to go to each user to ascertain what they

want. He simply carries out market research, either in-house

or through an outside agency. This research establishes the

general preference of the users/customers. The automobile is

then manufactured keeping in view these preferences and

other factors such as economics and technology, into consid-

eration. There is no doubt that that the automobile will not

meet the needs of every potential user. However, it is

brought to the market and sold. Customers buy it, if it

meets most of their needs as compared to any other make

available in the market. Thereafter, they either match their

needs/preferences with this particular automobile, or they

modify it if they feel like. For instance, they may like to

modify the engine to make it work with diesel instead of

gasoline. There is, however, another alternative, of buying

a customized one if the customer's budget permits or if it

is considered absolutely necessary. This analogy is not

unique for automobiles only, it holds good for any other

product.

Software can be treated in the same manner as auto-

mobiles, or for that matter any other product. What is meant

here is that software should be standardized, as far as

possible. It should be developed after obtaining the

requirements/preferences of the general body of users.

Specific users should then match their needs with the soft-

ware product, and not the other way around, as is being done

61

at present. However, it may not always be possible to match

own needs with the product. In that case, users can modify

the software either in-house or through the manufacturer.

This should however, only be done if the need for modifica-

tion is too pressing. For instance, when a company wants to

maintain confidentiality about data and type of business

practices being implemented or when a scientific program is

required for special purposes, or when there is a change in

legal requirements. The trade-off between modifying and

matching to the needs versus adapting own needs to the soft-

ware product, must be examined and evaluated. In other

words, software should be modified only if the benefits

outweigh the other approach of its adaptation to own needs.

It must also be kept in mind that programs have limitations,

and they should therefore, be used only for what their capa-

bilities permit. An automobile cannot be driven beyond the

maximum speed limit imposed by the manufacturer. Similarly,

programs should not be run for purposes not specified by the

manufacturer. Another alternative to extensive modifica-

tions is to have modules available separately, just like

spare parts for any other product. These modules should have

the properties of coupling and cohesiveness, so that several

modules can be assembled together and a program made.

Modifications should in no way be done for trivial

reasons. Modifying an inventory or payroll package, just

because a company has different formats of forms, is not

advisable. In such a case, the formats of the forms can be

changed, if all the information can be provided by the soft-

ware pack4a6. Often modifications will not be required.

Moreover, modifications will involve lesser costs as

compared to in-house development of a new product or devel-

opment of a customized product outside. The standardized

software product will be much cheaper as compared to the

customized one. Therefore, several similar products will be

62

-7 -1

available in the market for the user to choose from. The

user can pick the one which caters for the maximum number of

his needs.

There is another advantage of this product approach.

Costs of manufacturer of the software product will be spread

out and so the customer will pay little price. When software

will be cheaper, it will be more affordable. With hardware

already being cheaper and affordable, more and more applica-

tions of computers will be seen, which will benefit the

society as a whole.

If due to peculiar needs, a company decides to have

a customized software developed, whether in-house or

outside, then the onus of providing accurate, adequate and

specific requirements must lie with the management. For this

purpose, management must develop sufficient awareness of

computers. Managers should not consider computers as an evil

but as an aid to their decision making. Similarly, they

should ensure that the lower level users also consider it as

a helpful tool in their day-to-day operations. Once this

awareness is there, the management can press the users to

define the correct requirements. After the requirements are

given to the software developers, they should not be changed

unless it is unavoidable. By unavoidable changes I mean

those necessitated by virtue of new legislation or new tech-

nology etc Software recognition and education of all

concerned can help in this regard as contemplated in the

previous chapter.

C. USER ORIENTATION VS CUSTOMER ORIENTATION

By discounting the importance of user, it is by no means

implied that software developers should develop what and how

they feel like. Of course, they must give due consideration

to the potential market and to the utility of the software

63

...

product, once it comes into the market. What is meant here

is that a different stance should be taken. In the product

concept, the software needs to be marketed, and as in

marketing of any other product, customer is always the king.

Therefore, his needs have to be met. It must be remembered

that there is a difference between the earlier version of

user satisfaction versus this customer satisfaction. The

former denotes total dependency, whereas it is not so for

the latter. The following points will further differentiate

and clarify this issue.

1. User Orientation

- The developer is acquainted to the user to some extent

or is organizationally related to the user.

- The user specifies his requirements directly to the

developer.

- The user has one to one communication with the devel-

oper.

- The user participates in design reviews.

- The developer installs the software for the user.

- Problems in using the software are resolved by direct

interaction between the user and the developer/

maintainer.

2. Customer Orientation

- The developer is neither acquainted with the users nor

he has any organizational relationship with them.

- Requirements of the users are either deduced by the

developer or are presented to him by an intermediary,

such as a market research organization.

- There is no one to one communication between the user

and the developer.

- Users do not participate in design reviews.

64

- Software is installed by the users themselves or

someone else other than the developer does it for them.

- Problems are resolved through correspondence, sometimes

through an intermediary.

65

. . ~

VI. THE HUMAN FACTORS

Programming is a human activity and programmers are

human beings. Elimination of the software crisis demands

effective management, which in turn requires the managers to

treat programmers as human beings and not as another machine

constituting the computer configuration. Programming is a

labor-intensive activity and human beings are the principal

factor of software production. Therefore, to increase soft-

ware productivity, the human factors warrant serious consid-

eration by the managers.

Once we accept software developers as people first and

then programmers, we have reason to believe that managerial

theories and practices such as Herzberg's two factor theory

of motivation, Maslow's hierarchy of needs, McGregor's theo-

ries X and Y, are all applicable to the software people to

the same extent as they are to any other category of people.

A. MOTIVATION

Motivation is the means by which the potent wellsprings

of human energy and creativity are directed towards people's

desired goals. Most productivity studies have found that

motivation is a stronger influence of productivity than any

other contributing factor. [Ref. 24].

Motivation of software people is vital if we want to

increase their productivity. First, we need to understand

their objectives and then we need to incorporate these into

the corporate decisions. We must also understand how the

motivating factors of software people differ from other

groups of people. A programming experiment was conducted by

Weinberg which concluded that programmers have high

66

achievement motivation [Ref. 25]. If good achievement is

defined with regards to what managers want form the project,

the programmers will tend to work hard to give what is asked

for. Another survey indicates that data processing people

which consisted of a dominance of software people, are

better motivated by growth needs than by social needs as

shown in Figure 6.1 [Ref. 28]. One more study highlighted

that distinction made by Herzberg between "hygienic factors"

(supervision, administration, working conditions, salary,

and inter-personal relations) and "motivating factors"

(achievement, recognition, the work itself, advancement,

self fulfillment, and participation), held good for data

processing persons [Ref. 26]. However, marked differences

were observed between the factor profiles of data processing

persons and the overall population taken by Herzberg.

6 02
60 -- Growth need

- Social need
570 5.65

5.59 p

5 5.48 ,5.41 54- '38
77 530

5.21

S50 45

,0 /,\k o

4 19

40' .. '
Data Sa i e, Other Service CIericai Manageral

oroces,ng Oro fessonais
ciofess,onals

Figure 6.1 Comparative Growth Needs and Social Needs

67

L-A

BIBLIOGRAPHY

AFIPS-Time, A National Survey of the Public's attitudes
Toward Computers, AFIPSand ilme In.,-November 1971. T

Alderfer, C. P., Existance, Relatedness and Growth: Human
Needs in Organizational Settings, Yree Pe-ss, New York,t97T.

Alford, M.W., "A Requirements Engineering Methodology for
Real Time Processing Requirements,' IEEE Transactions on
Software Engineering, January 1977.

Arendt, H., The Human Condition, University of Chicago
Press, Chicago, 19-58.-

Aron, J.D., The Program Development Process: The
Individual Programm-er," Aalson-Wesiey, Massachusetts, 1974-.

Basili, V.R. and Reitter, R.W., "An Investigation of
Human Factors in Software Development," Computer, December
1979.

Basili V Models and Metrics for Software Management and
Engineering,IEEE-UCmpuer SocietyPress, Los Angees, 98ou.

Bass, L.J. and Oldehoeft R.R., "Dynamic software science
with applications,' IEEE Transactions on Software
Engineering, September 19/9.

Bendix, R. Work and Authority in Industry, John Wiley
and Sons, New torR--19-_. _-

Biggs, C., Managing the System Development Process,
Prentice-Hall, Engiewd ClIrfs, New jersey, LVO.y

Boehm, B.W., "Software Engineering," IEEE Transactions on
Computers, December 1976.

Bratman, H. and Court, T.,"The Software Factory," IEEE
Computer, May 1975.

Brooks, F.P., The Mythical Man-Month,
Addison-Wesley,Massachusettsy,-l75.

Bryan, W. and Siegel, S., "Makinl1 software visible opera-tional and maintainable in a sma project environment,
IEEE Transactions on Software Engineering, January 1984.

Chen, &.T "Program Complexity and Programmerroductivity, IEE Transactions on Sftware Engineering,
May 1978.

Cofer, C. and Appley, M., Motivation: Theory and
Research, John Wiley and Sons, New York, 964.

Conway, M.E., "On the Economics of the Software Market,"
Datamation, October 1968.

Conway, M.E., "How do Committees Invent?" Datamation,
April 1968.

81

29. Van Tassel D.L. and Van Tassel, C.L The Compleat
Computer Science Research Institute, Ic.,-aTo Alto,
pp. 6t-61, 1983.

30. §ackman, H. Erikson W.J. and Grant, E.E
Exploratory Experimentai Studies,, Comparing Online an"

Offline Programming Performance, Communications of
the ACM, January, 1968.

31. Schwartz, ,J. "Analyzing Large-Scale System
Development," Proceedings of the 1968 Nato Conference,
1968.

32. Myers, G.J., A Controlled Experiment in Program
Testing and Code Walk-throughs/Inspections,"
Communications of the ACM, pp. 760-768, September
L /8.

33. Rubey, R., ^"Higher Order Languages for Avionics
Software - Aurvey, Summary and Critique," NAECON,
1978.

80

14. Glass R.L Software Soliloquies, Computing Trends,
Seattle, pp. 77-83, 8I.

15. Freeman,. P., It Proposed Curriculum for Software
Engineering Education, Proceedings of the 3rd
International Conference n oftware ngineering, pp.

16. McGill, J.P., "The Software Engineering Shortage: A
Third Choice, IEEE Transactions on Software
Engineering, pp. 42--79, January 19S4.

17. Gunther, R.C., Management Methodology for Software
Product Engineering, John Wiley and bons-,New York,
pp. 2-16, 1978.

18. Wegner P Research Directions in Software
Technology, PMT Press, Massachusetts, p.36, 1979.

19. Tou, J.T., Software Engineering, Academic Press, Inc.,
New York, pp. Ti6-i36b. U.

20. Comer, D., "Principles of Program Design Induced from
Experience with Small Public Programs, IEEE
Transactions on Software Engineering, pp. 169-17-37,
rarcn L93.-

21. Martin, J. Aplication Development Without
Programmers, Prentice- a , nc., New jersey, 1982..

22. Liu, C. "A Look at Software Maintenance," Datamation,
pp. 51-55, November 1976.

23. Scharer, L.L. "Pinpointing Requirements," Datamation,
pp. 138-151, April 1981.

24. Gellerman, S.W., Motivation and Productivity American
Management Association Exec-u-tive Books,- ew York,
1963.

25. Weinberg, G.M. and Schulman, E.L. "Goals and
Performance in Computer Programming,"Auman Factors,
pp. 70-77, 1974.

26. Fitz-Enz, J., "Who is the DP Professional?"
Datamation, pp. 124-129, September 1978.

27. Cougar, J.D. and Zawacki, R.A., "What motivates DP
Professionals?" Datamation pp. 116-123, September
1978.

28. Boehm, B. W. Software Eng Economics,
Prentice-Hall Inc., Englewood Clifs, New Jersey, pp.
667-675, 1981.

79

LIST OF REFERENCES

1. Bukley F.J. and Poston, R. "Software Quality
Assurane IEEE Transactions on 0 oftware Engineering
pp. 36-41, January t94

2. Mills H.D., "Software Development "IEEE Transactions
on Sottware Engineering, pp. Z65-2 '' 3December 1976.

3. Heninger, K.L., "Specifying Software Requirements for
Cornp lex .Systems: New Techniques and their
App~ ications," IEEE Transactions on Software
Engineering, pp. 2-12, January 1980.

4. Glass RL., Software Soliloquies, Computing Trends,
Seattle, pp. 1-25, 198-.

5. Pressman, R.S., Software Engineering: A Practitioner's
A poahMcGraw-~HttInc. NeN w Yok, pp. 22--Z3,

6. Myers, G.J., The Art of Software Testing, John Wiley
and Sons, New Y-6rk-,p.-viTt~T99T-

7. Baber, .R.L., Software Reflected, North-Holland
Publishing Co., New York, PP. JtZ-.tO7V 1982.

8. Boehm, B. Software Engineerinl Economics,
Prentice-Hall inc., Englewood C11tffs New. jersey, PP.
15-17, 1981.

9.
Ibid, p.18.

10. Boehm, B.W., "Software and its Im act: A Qatttv
Assessment, Datamation, pp. 48- 5 , May 1913.

11. Van Tassel D.L. and Van Tassel, C.L. The Cornleat
Computer, tcience Research Institute, inc., TaT6---TU6-T
pp.8-9 1983.

12. Hoare, C.A R, "Software Engineering: tA Keynote
Address, Proceedings of the 3rd International
Conference on Software EngineeYThg, p.12 9~

13. Wegner P Research Directions in Software
Technology, MIfT Press, nasacnusetts, p.42T, 19/9.

78

" • -- , , -- - i-- - . - 7 . 7- - 7- -7 " -7 . 7 . - - - -" > ." - • . -- - • . " i - .-

Software should be treated as a product, similar to any

other industrial product. It should be standardized, as much

as possible. The organizations need to be encouraged to make

use of the standard software product, unless there are other

pressing requirements. In-house development and modifica-

tions of software be discouraged by the management. Software

should be developed in-house only if there are peculiar

needs of the organization. It should be modified only if

there are inevitable changes. Requirements for software

development should be ascertained from the market as a

whole, and not from a few specific users, unless it is a

customized product.

Managers must realize that software developers are human

beings first and then programmers. Therefore, the personnel

management theories and practices, are equally applicable to

them as they are to any other category of people. They need

to be motivated, and their peculiar needs are required to be

fulfilled. They should be staffed properly, and career paths

need to be established for them.

Shifting of software development tasks to the cheaper

hardware provides the potentials of reducing the time and

costs involved in the development process. A data bank of

standard algorithms and modules needs to be established and

economic evaluation of the technical tools and techniques is

warranted.

If the fore-mentioned actions are taken, there is no

doubt that technical and project management tools will yield

fruitful results. The software industry in general, and the

managers in particular, must strive to take the required

actions, if there is a will to wipe out the software crisis,

thereby obtaining the optimum advantages from the computer

technology for the benefit of mankind.

77

................................

onus lies on the managers to ensure proper education of the

software engineers, the users, and last but not the least,

their ownselves. Curriculas for under-graduate and graduate

education in software engineering need to be prepared, which

should include an equal amount of managerial and technical

courses. The curriculas proposed several years ago should be

modified accordingly, and then implemented. A graduate

course of study leading to the degree of Master of Science

in Software Engineering (MSE), should be introduced widely.

In-house training of experienced and qualified engineers in

other disciplines can serve as a short-term solution.

To overcome the problem of guaranteeing the software

product, the software engineers should be regarded as

professionals. The Institute of Software Engineering (ISE),

needs to be established, to carry out the tasks of certifi-

cation of software engineers, and enforcement of code of

ethics for them. Due to the acute shortage of software

professionals, increasing their productivity warrants

serious consideration. Enhancing their skills, and catering

to the environmental and human factors can go a long way in

obtaining optimum performance from the programmers.

Academicians and practitioners need to work more closely,

and share their knowledge and experiences with each other.

Similarly, managers and the technicians should learn the

broad aspects of each others' disciplines. They should

however, retain their existing jobs. In no event, the tech-

nical people should be made managers. They should have

career paths in their own specialties. Sharing of knowledge

extends to the programmers as well. Instead of "re-inventing

the wheel," they should share each others' programs and

learn lessons from each others' experiences.

76

...... ---..-..- - --.-

.

VII. CONCLUSIONS AND RECOMMENDATIONS

The preceding discussion somewhat understates the success

of the software-producing sector of our society. Obviously,

there have been substantial successes, which more than

offset the negative effects. Scientists and technicians have

done a lot and are still doing much. They have toiled hard,

shedding enough of their sweat in developing a host of tech-

niques and tools for software development. It's now time for

the managers to step in and contribute their share. The

situation is not so dismal as projected by most of the

pundits in the software field--probably as a result of frus-

tration.

In the not too distant future, our way of life is going

to depend on the computer technology as it depends on tech-

nologies like electrical power, aircraft, automobile, radio

and television. If there is a delay in the wide-spread

application of computer technology, it will be because of

software and not hardware. Managers must realize the exis-

tance of software crisis, and its serious impact on every

walk of life in general, and to the business sector in

particular. If optimum benefits are to be obtained from the

new technology of computers, concerted efforts are required

to eliminate the software crisis. Importance of software

must be recognized and research efforts be put on the right

path. For this purpose, software should be treated as an

engineering discipline.

Omnipotent, panacean tools and techniques for software

development do not exist. No software development tools or

project management tools can compensate for the software

engineer's lack of knowledge, skill and understanding. The

75

. . . °,

D. CAREER PATHS

As mentioned in the section on motivation, software

professionals are motivated highly by growth, achievement

and recognition. Therefore, managers must ensure that

adequate career paths are established for them. Several

ladders can be established, like

- Associate Software Engineer

- Assistant Software Engineer

- Software Engineer

- Senior Software Engineer

- Executive Software Engineer

- Chief Software Engineer

Alternatives for Engineer should also be established,

such as "Evaluator" for the test function, "Writer" for the

publications function, and "Analyst" for the support func-

tion. Formal descriptions should also be provided which

define increasing responsibility and comparable experience

for comparable titles. For instance if Senior Software

Engineer requires ten years of experience, Senior Software

Evaluator should also require the same amount of experience.

I

.I

74 "

bring out the best in them. Software people achieve a good

deal of self-actualization by becoming better software

professionals. This principle highlights that that managers

should help the software people determine how they want to

grow professionally, and to provide them career development

opportunities. Managers should curb the tendency amongst the

software people to become irreplaceable. Instances do occur

when a person does a job exceptionally well and thereafter

he is always assigned that job. Such instances are

frequently found in maintenance of software. Some software

professionals become expert in maintaining certain piece of

software, and so the managers do not allow them to work on

anything else. Consequently, these people get stuck in this

particular job, and eventually they feel better to quit the

organization.

4. The Principle of Team Balance

This principle indicates that people should be

selected who will complement and harmonize with each other.

Apart from balancing the technical skills, the psychological

factors peculiar to the software people, should also be

balanced.

5. The Principle of Phase Out.

Survival of the fittest is what this principle

stands for. Therefore, the software professionals who are

not giving their optimum, should be eliminated. However,this

should be the last resort. Before that, efforts should be

made to rotate the person to some other job in which it is

felt that he has interest. If all such efforts fail, then it

is better to phase out the misfit person.

73

-2•t... ...-... ,

regards to the software persons. Boehm discusses five basic

principles of software staffing, which are as follows

[Ref. 28]. These principles are as follows.

1. The Principle of Top Talent

2. The Principle of Job Matching

3. The Principle of Career Progression

4. The Principle of Team Balance

5. The Principle of Phase Out

1. The Principle of Top Talent

Since there is a wide variation in productivity

among different software practitioners, only the better

people should be hired. Few better people will give a better

output than many bad ones. Of course, they are going to cost

more, but the additional cost will be offset by the benefits

of having increased productivity.

2. The Principle of Job Matching

This principle suggests that the tasks should be

fitted to the skills and motivation of the people. Managers

should ensure that jobs are matched to the skills a person

has, for instance, a person good in coding may not be good

in documenting. A common violation of this principle arises

when the programmers are promoted to management cadre. This

usually does not work, and consequently much more

mismatches, frustrations and damaged careers are observed in

software engineering than in any other field. The reason for

this is that on the average the data processing personnel

have low social needs, whereas managers generally rank it

high.

3. The Principle of Career Progression

The basic premise of this principle lies in helping

the software people to self-actualize i.e. enabling them to

72

new computer language or create a system which can make it

easier for others to write super-systems. He has the convic-

tion that all such projects require nothing but computers

and programming. Of course, he has lot of such knowledge,

but during the process, when knowledge from outside the

computer world is required, he is stuck.

The compulsive programmer spends almost all of his time,

working on computer, but he doesn't call it working.

Instead, he calls it "hacking." The dictionary meaning of

"to hack" is "to cut irregularly, without skill or definite

purpose; to mangle by or as if by repeated strokes of a

cutting instrument." As mentioned earlier, he does have

enough skills, but he is without definite purpose. He does

not believe in setting forth a plan and goals, because he

has the technique, no doubt, but he lacks knowledge.

Software systems can be built without plan and without

knowledge, just as houses and buildings can be built in a

similar manner. The important point here is that as the
system becomes large, it also becomes unstable, when built

in such a way. Eventually, it results in failure of the

software and in extensive chaos. There is therefore, a word

of caution for the managers. Managers! if you want to avoid

software failures, set objectives and goals, plan and design

properly, and have plenty of documentation. In other words,

managers! watch out for the compulsive programmer.

[Ref. 29].

C. STAFFING

Software productivity varies from individual to indi-

vidual. This high degree of variation is ideally suited to

enhance productivity by using the right people. The question

of having the right mix of people leads us to the staffing

principles which should be followed by the managers with

71

The compulsive programmers are distinguished from the

professional ones, as the the latter address themselves to

the problem to be solved, whereas the former see the problem

merely as an opportunity to interact with the computer. The

ordinary professional programmer usually discusses his

programming problems with others. He does considerable plan-

ning before proceeding with the actual design and coding. He

therefore, spends considerably less time on the computer,

and may even allow others to key in his program. He is

usually, organized and goes about doing his job systemati-

cally with a slow and steady pace. If he encounters some

errors in the program, he will get away from the computer

and look for the errors and bugs in a peaceful, non-

computerized atmosphere. He will allow others to run his

program, and thus the time which he saves, he spends on

documenting the program and doing other beneficial works. He

regards programming as a means to the end, not as an end

itself. He gets satisfaction from solving a big problem, and

not from bending the computer to his will.

The compulsive programmer is usually a good technician.

He knows every detail of the computer he is working on. He

is often tolerated in computer centers because of his knowl-

edge of the system and because he can write small programs

quickly, in one or two sessions of say, twenty hours, each.

His programs are used in the computer center after some

time, but there is a drawback to that. Since he can hardly

be motivated to do anything except programming, his programs

are not documented. Therefore, he is the only one who can

understand his own programs. Consequently, he is assigned to

teach his programs to others. He is like a bank employee who

doesn't do much for the bank and yet he is retained because

he knows combination to the safe. Usually, he likes to work

on large programs. In making such programs, he has ambitious

but imprecise goals. For example, he would like to create a

70

Nonetheless, what they do is that they then try to supple-

ment the lack of inner driving force with a little outer

driving force, just when the programmer is suffering from

too much. They should understand that increasing driving

force will first increase performance to a maximum, beyond

which addition of further driving forces will soon drive the

performance to zero. It has been observed in research that

this rapid fall-off is more pronounced in complex tasks, and

programming is a considerably complex task. For instance,

programmers are pressed hard to find out errors in their

programs, quickly. Consequently, they try hard for the

rapid elimination of the errors but they do not succeed.

In view of the findings of the surveys mentioned above,

managers should keep in mind that the motivating factors for

software people are different from those for other people.

In the interest of having a better product, managers must

give high priority to motivation of the software producers.

B. WATCH OUT FOR THE COMPULSIVE PROGRAMMER

In every computer center, one can find bright young men

of disheveled appearance, often with sunken glowing eyes,

sitting at computer consoles, their arms tensed and waiting

to fire their fingers, already poised to strike, at the keys

on which their attention seems to be riveted as a gambler's

on the rolling dice. If not in such a situation, they sit at

tables full of computer printouts. They work for twenty to
thirty hours at a stretch. They are not much concerned about

food, and they sleep a few hours and then go back to the

computer. They are not much concerned about their hygiene

and bodies, and about the rest of the world. When they are

involved in any job, they exist only for the computers.

These are the kind known as compulsive programmers.

69

0"

TABLE 1

Comparison of First Level Motivational Factors
Data Processing Professionals Vs General Population

-- i.&; ' :' - "? -'Zs E '; ':e"

AI evement 1 Achievement

2 Recognition 2 PossibDility for growth
3 Work itself 3 Work itself
4 Responsibility 4 Recognition
5 Advancement 5. Advancement
6 Salary 6 Supervision. technical
7 Possibility for growth 7 Responsibility
8 Interpersonal relations. suoordinate 8. Interpersonal relations, peers
9 Status 9 Interpersonal relations, subordinate

10 Interpersonal relations, superior 10. Salary
11 Interpersonal relations, peers 11 Personal life
12. Supervision, technical 12. Interpersonal relations, superior
13 Company policy and administration 13. Job security
14 Working conditions 14. Status
15. Personal life 15. Company policy and administration
16 Job security 16. Working conditions

The rank order of motivational factors in the survey of

Herzberg and in Fitz-Enz survey are given in Table 1, which

summarizes the differences in both. This summary also

supports the results of Cougar-Zawacki [Ref. 27], which

indicates high preference for growth amongst the data

processing people. Growth was ranked seventh in Herzberg's

survey, whereas it is second in Fitz-Enz survey. The other

majrr differences were that data processing persons are more

strongly motivated by opportunities for technical supervi-

sion, by peer relations, and by personal life. They are less

strongly motivated by responsibility, salary, and status.

Another interesting point is that these differences were

more pronounced in case of software people than they were

among other computer people.

Sometimes managers assume that lack of performance

implies lack of motivation, and of :ourse they are wrong.

68

~~~~.. .. .. . . . . .. . . . .. . . . . . . . . . . . i . lf. . . . . . . . . . ..-- . - . . . -i . . a - - " - . " - -. - • - . - "



Crosby, P.B., Quality Is Free: The Art of Making Quality
Certain, McGraw-Hflii New-York-, 197T-

Daly, E.B.,_ "Managing Software Engineering," IEEE
Transactions on Software Engineering, May 1977.

Daly, &.B., "Organizing for Successful Software
Development, Datamation, December 1979.

Davis K., Human Relations at Work, McGraw-Hill, New
York, 192.

DeMarco T Controlling Software Projects, Yourdon
Press,New York,1982.

DeMarco, T Report on the 1977 Productivity Survey,
Yourdon Press,*Septembr 1977.-

Donaldson, H., A Guide to the Successful Management of
Computer Projects, Wiley, NeW-Yo-rC7, 19/8.

Elbing, A.O_. Behavioral Decisions in Organizations,
Scott Foresman anA Co., illinois, 1978.

Elsalmi, A.M. and Cummings, L.L., "Managerial Motivation:
The Impact of Role Diversity, Job Level, and Organizational
Size," Proceedings of the Academy of Management, 1968.

Esterling, B "Software Manpower Costs: A Model,"
Datamation, March.1980.

Fairley- R.E.,"Software Engineering Education: Status and
Prospects," Proceedings of the Twelfth Hawaii International
Conference on stem Scienc, Western Periodicals Ltd.,
Caiifornia,--1979,ei

Fordyce, J.K. and Weil R. Managing With People,
Addison-Wesley,Massachusetts,1971.

Frank, W.L "The New Software Economics: Parts 1-4,"
Computerworld, January 1979.

Garrity J., Getting the Most out of Your Computer,
Mckinsey, New York 1963.

Gildersleeve, T.R., Data Processing Project Management,
Von Nostrand Reinhold, New Yr, 19 1

Glass, R.L., "Persistent Software Errors," IEEE
Transactions on Software Engineering, March 1981.

Gordon, R.L. and Lamb J.C., " A Close Look at Brooks'
Law," Datamation, June 19 7.

Hansson, R.O. and Fiedler, F. E., "Perceived Similarity
Personality and Attraction to Large Or anizations, Journal
of Applied Psychology, vol. 3, no. 3, iN73.

Hoare, C.A.R., "The Emperor's Old Clothes,"
Communications of the ACM, February 1981.

Homans, G.C., The uman Group, Harcourt, Brace and World,
New York, 1950.

Jones, C Programming Productivity -E ssues for the
Eighties, IE Compt -S cley Press, Los AI 7e ,198T7

82



Jones, C.B., Software Development: A Rigourous Approach,
Prentice-Hall, Englewood 11Ts, New Jefsiy 7T9W0

Kanter J., Management-Oriented Management Information
Systems, Prentilce-HaI, Engiewood Cliffs, New Jersey, 1974.

Kerr S , Organizational Behavior, Grid Publishing Inc.,
Ohio, 1§79:

Kindred A Data Systems and Management, Prentice-Hall,
Englewood Cliffs,New jersey,--l780.

Koontz, H. and O'Donnel, C., Principles of Management: An
vsis~of Managerial Functions, MYraw-irli, New york,

Kraft, P., Programmers and Managers: The Routinization of
Computer Programmin in the-United-State --, Springer-Verlag,
ew York, 197.

Lamb, C.A.,"DP and the user: A matter of planning,"
Datamation, November 1978.

Lientz, B. and Swanson, E., Software Maintenance
Management, Addison-Wesley, Massachusetts, 1980.

Levinson, H., Psychological Man, Levinson Institute,
Cambridge, Massachusetts, 196.

Martin J. Software for Distributed Processing,
Prentice-ftall, tnglewood uiiffs--,New Jersey, 198l.

Maslow, A.H., Motivation and Personality, Harper and Row,
New york, 1954.

Maslow, A.H.,"A Theory of Human Motivation,"
Psychological Review, vol. 50 (1943).

Maslow, A.H., Euypsychian Management, Irwin Dorsey Press,
Homewood, 1965.

McCracten, D.D., "Software in the 80s: Perils and
Promises,' Computerworld, September 17, 1980.

McGregor0D., The Human Side of Enterprise, McGraw-Hill,
New York,19g0

Merwin, R.E.(ed),"Special Section on Software
Management IEEE Transactions on Software Engineering, July
1978.

Metzger, P.W., Managing a Programming Project,
Prentice-Hall, Englewood-CTNTIT, N~w Jersey,

Monash, P., "Software Strategies," Datamation, February
1984.

Nelson E.A., Management Handbook for the Estimation of
Computer Programming osts,
Systems Deveiopment Uo-- October 31,1966.

Newell A. and Simon, H Human Problem Solving,
Prentice-Aall, Englewood Cliffs,'Aew Jersey, 197T

Patrick R.L., "Probing Productivity," Datamation,
September 1980.

83



Phister, M.Jr., Data Processing Technology and Economics,
Santa Monica Publsti- Co. an igital Press__Cairfornia,
1979.

Porter L W., Behavior in Organizations, McGraw-Hill, New
York, 1975.

Reifer, D., Software Management, IEEE Computer Society
Press, Los Angeles, .979

Richards, M.D., and Nielander, W.A., Readings in
Management, South-Western Publishing, Cincinnati-,92. --

Ridge, W.J. and Johnson, L.E., Effective Management of
Computer Software, Dow-Jones Irwin, Illinois, 197-3-.

Roche, W.J. ,,and Mackinnon, N.L.,"Motivating People with
Meaningful work , Harvard Business Review, May-June 1970.

Ross, D.T. and Bracket, J.W., "Structured Analysis for
Requirements Definition IEEE Transactions on Software
Engineering, January 1977.

Sayles, L.R. The Behavior of Industrial Work Groups,
Wiley, New York,'1958.

Schneiderman B., Software Psychology: Human Factors in
Computer and Information iys ems,-w1ntnrop Pre-s, Cambridge-,
Iassachuses, 19U.

Scott R.F. and Simmons D.B., "Programmer Productivity
and the Delphi Technique," batamation, May 1974.

Sharpe, W.F. The Economics of Computers, Columbia
University Press,'New-York, 1969.

Shaw, J.C. and Atkins W. Managing Computer System
Projects, McGraw-Hill, New York,197U-

Sutermeister, R.A., People and Productivity, McGraw-Hill,
New York, 1963.

Tajima, D. and Matsubara, T. 81"The Computer Software
Industry in Japan," Computer, May .1

Thurber, K., Computer System Requirements, IEEE Computer
Society Press, Los Angeles 190.

Uris, A Mastery of Management, Dow Jones-Irwin Inc.,Illinois, 1§8.

Viteles M , Motivation and Morale in Industry, Norton,
New York, 1953.

Webber, R.A., Management: Basic Elements of Managing
Organizations, nlchard Inc.,liinois, 1979.

Weinberg, G.M., "The Psychology of Improved Programming
erformance," Datamation, November 1972.

Weinwurm, G F On the Management of Computer
Programming, Auerbadi, NeW York, 197u.

Weizenbaum J., Computer Power and Human Reason,
W.H.Freeman, San Francisco,976.

Whyte, W.F., Man and Organization, Richard D. Irwin Inc.,
Homewood, Illinois, 199.

84



Wiener, j. The Human Use of Human Be*ns. Cybernetics
and Society, IboubT1-eday -and=6.-FNew Yor , Lv4.

Wilkes, , "Software engineering and structured
~rogrammi§,-IEYtE Transactions on Software Engineering,

Witt, 3., "The COLUMBUS Appoah, IEEE Transactions on
Software Engineering, December 1975.

Yourdon, E., iagng the.System Life Cycle: A Software
Deveomen~t Methodoog uI vevi Yourdon Pes, -e ok

Yourdon, E., Classics in Software Engineering, Yourdon
Press, New York, 199

Zaleznik A. and Moment, D., Interpersonal Dynamics,
Wiley, New tork, 1964.

Zunde P., "Empirical,,Laws and Theories of Information
and Sottware Sciences," Information Processing and
Management, August 1984.

85

.. . . .. . . .< 



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey California 93943

3. Computer Technology Programs, Code 37 1
Naval Postgraduate Schoo1
Monterey California 93943

4. Associate Professor Clair A. Peterson 1
Code 54Pe
Department of Administrative Sciences
Naval Postgraduate School
Monterey California 93943

5. Associate Professor Norman R. Lyons 1
Code 541b
Department of Administrative Sciences
Naval Postgraduate School
Monterey California 93943

6. Lieutenant Commander Tahir N. Qureshi 2
5/42 Model Colony
Karachi 27, Pakistan

86

.°.



FILMED

8-85

DTIC


